Skip to main content
Log in

Human Motion Planning Based on Recursive Dynamics and Optimal Control Techniques

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling themotion of articulated figures. A quasi-Newton nonlinear programmingtechnique (super-linear convergence) is implemented to solve minimumtorque-based human motion-planning problems. The explicit analyticalgradients needed in the dynamics are derived using a matrix exponentialformulation and Lie algebra. Cubic spline functions are used to make thesearch space for an optimal solution finite. Based on our formulations,our method is well conditioned and robust, in addition to beingcomputationally efficient. To better illustrate the efficiency of ourmethod, we present results of natural looking and physically correcthuman motions for a variety of human motion tasks involving open andclosed loop kinematic chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahrikencheikh, C. and Seireg, A., Optimized-Motion Planning: Theory and Implementation, Wiley-Interscience, New York, 1994.

    Google Scholar 

  2. Alexander, R., 'A minimum energy cost hypothesis for human arm trajectories', Biological Cybernetics 76, 1997, 97-105.

    Google Scholar 

  3. Angeles, J. and Ma, O., 'Dynamic simulation of n-axis serial robotic manipulators using a natural orthogonal complement', The International Journal of Robotics Research 7(5), 1988, 32-47.

    Google Scholar 

  4. Ayoub, M.M. and Lin, C.J., 'Biomechanics of manual material handling through simulation: Computational aspects', Computers Ind. Engineering 29(1), 1995, 427-431.

    Google Scholar 

  5. Badler, N.I., Phillips, C.B. and Webber, B.L., Simulating Humans: Computer Graphics Animation and Control, Oxford University Press, New York, 1993.

    Google Scholar 

  6. Bordlie, K.W., The State of the Art in Numerical Analysis, Chapter III, Academic Press, New York, 1977.

    Google Scholar 

  7. Brandl, H., Johanni, R. and Otter, M., 'A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix', in Proceedings of IFAC/IFIP/IMACS International Symposium on the Theory of Robots, Vienna, Austria, 1986.

  8. Brandl, H., Johanni, R. and Otter, M., 'An algorithm for the simulation of multibody systems with kinematic loops', in Proceedings of the IFToMM Seventh World Congress on the Theory of Machines and Mechanisms, Sevilla, Spain, 1987.

  9. Churchill, S.E. and Oser, H., Fundamentals of Space Life Sciences, Vol. 2, Krieger, Malabar, FL, 1997.

    Google Scholar 

  10. Cohen, M.F., 'Interactive spacetime control for animation', in Computer Graphics (SIGGRAPH '92 Proceedings), Vol. 26, 1992, 293-302.

    Google Scholar 

  11. Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs, NJ, 1983.

    Google Scholar 

  12. Engeln-Mullges, G. and Uhlig, F. Numerical Algorithms with C, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  13. Featherstone, R., Robot Dynamics Algorithms, Kluwer Academic Publishers, Boston, 1987.

    Google Scholar 

  14. Greenwood, D.T., Principles of Dynamics, Prentice Hall, Englewood Cliffs, NJ, 1988.

    Google Scholar 

  15. Gregory, J. and Lin, C., Constrained Optimization in the Calculus of Variations and Optimal Control Theory, Van Nostrand Reinhold, New York, 1992.

    Google Scholar 

  16. Lathrop, R.H., 'Constrained (closed-loop) robot simulation by local constaint propagation', in Proceedings of the 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, April, IEEE, New York, 1986, 689-694.

    Google Scholar 

  17. Lilly, K.W., Efficient Dynamic Simulation of Robotic Mechanisms, Kluwer Academic Publishers, Dordrecht, 1993.

    Google Scholar 

  18. Lo, J., Metaxas, D. and Badler, N.I., 'Controlling a dynamic system with open and closed loops: Application to ladder climbing', in ASME Design Automation Conference Proceedings, Sacramento, CA, September, ASME, New York, 1997.

    Google Scholar 

  19. Oh, S.Y. and Orin, D.E., 'Dynamic computer simulation of multiple closed-chain robotic mechanisms', in Proceedings of the 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, April, IEEE, New York, 1986, 15-20.

    Google Scholar 

  20. Plücker, J., Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement, B.G. Teubner, Leipzig, 1868.

    Google Scholar 

  21. Popovic, Z. and Witkin, A., 'Physically based motion transformation', in Computer Graphics (SIGGRAPH '99 Proceedings), Vol. 33, 1999, 11-20.

    Google Scholar 

  22. Press, W. and Teukolsky, S. Numerical Recipes in C, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  23. Rockafellar, R.T., 'The multiplier method of hestenes and powell applied to convex programming', Journal of Optimization Theory and Applications 12(6), 1973, 555-562.

    Google Scholar 

  24. Rose, C., Guenter, B., Bodenheimer, B. and Cohen, M.F., 'Efficient generation of motion transitions using spacetime constraints', in SIGGRAPH 96 Conference Proceedings, Annual Conference Series, 1996, 147-154.

  25. Schaffner, G., Newman, D.J. and Robinson, S.K., 'Inverse dynamic simulation and computer animation of extra vehicular activity', in AIAA 35th Aerospace Sciences Meeting, Reno, NV, American Institute of Aeronautics and Astronautics, Washington, DC, 1997.

    Google Scholar 

  26. Skrinar, A., Burdett, R.G. and Simon, S.R., 'Comparison of mechanical work and metabolic energy consumption during normal gait', Journal of Orthopedic Research 1(1), 1983, 63-72.

    Google Scholar 

  27. Vanderplaats, G.N., Numerical Optimization Techniques for Engineering Design: With Applications, McGraw-Hill, New York, 1984.

    Google Scholar 

  28. Walker, M.W. and Orin, D.E., 'Efficient dynamic computer simulation of robotic mechanisms', Journal of Dynamic Systems, Measurement and Control 104, 1982, 205-211.

    Google Scholar 

  29. Winter, D.A., Biomechanics and Motor Control of Human Movement, second edition, John Wiley & Sons, New York, 1990.

    Google Scholar 

  30. Witkin, A. and Kass, M., 'Spacetime constraints', ACM Computer Graphics 22(4), 1988.

  31. Yamaguchi, G.T., Performing Whole-Body Simulations of Gait with 3-D, Springer-Verlag, 1990.

  32. Zefran, M. and Kumar, V., 'Optimal control of systems with unilateral constraints', in International Conference on Robotics and Automation, Nagoya, Japan, 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, J., Huang, G. & Metaxas, D. Human Motion Planning Based on Recursive Dynamics and Optimal Control Techniques. Multibody System Dynamics 8, 433–458 (2002). https://doi.org/10.1023/A:1021111421247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021111421247

Navigation