Skip to main content
Log in

Fast-Marching Methods for Curvature Penalized Shortest Paths

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We introduce numerical schemes for computing distances and shortest paths with respect to several planar paths models, featuring curvature penalization and data-driven velocity: the Dubins car, the Euler/Mumford elastica, and a two variants of the Reeds–Shepp car. For that purpose, we design monotone and causal discretizations of the associated Hamilton–Jacobi–Bellman PDEs, posed on the three-dimensional domain \({\mathbb R}^2 \times {\mathbb S}^1\). Our discretizations involve sparse, adaptive and anisotropic stencils on a cartesian grid, built using techniques from lattice geometry. A convergence proof is provided, in the setting of discontinuous viscosity solutions. The discretized problems are solvable in a single pass using a variant of the fast-marching algorithm. Numerical experiments illustrate the applications of our schemes in motion planning and image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The Reeds–Shepp models are in this paper mostly discussed for comparison with the Euler–Mumford and Dubins models, since our numerical results in the Reeds–Shepp case are actually quite similar to [21], despite the distinct discretization.

  2. This specific discretization requires the metric tensors condition number to remain below \((\sqrt{3} +1)/2\), see [33] for an explanation of this bound and an unconditional method.

  3. Using a semi-lagrangian discretization for three-dimensional the Reeds–Shepp reversible model, and the present discretization for the three-dimensional forward model.

  4. Indeed, as shown below in Proposition 4.6, the minimum (49) of the linear program \(\mathcal{L}(M)\) on K is always attained at a matrix \(D_b\) attached to a superbase b.

  5. The scalar product \(\langle \hat{\mathbf v}_k, \hat{\mathbf n}\rangle \) makes sense thanks to the Euclidean structure on \({\mathbb E}_d\) and \({\mathbb E}_d^*\).

  6. www.github.com/Mirebeau/HamiltonFastMarching.

  7. Except perhaps abnormal geodesics, which we do not discuss here, see [37].

  8. Laptop processor: 2.7GHz Intel®Core i7 using a single core.

  9. The three-dimensional Reeds–Shepp model is already addressed here and in [21].

  10. The choice \(\xi = 1\) in Fig. 2, versus \(\xi =0.2\) in Fig. 14, yields a round disk instead of an ellipse.

References

  1. Benmansour, F., Cohen, L.D.: Tubular structure segmentation based on minimal path method and anisotropic enhancement. Int. J. Comput. Vision 92(2), 192–210 (2010)

    Article  Google Scholar 

  2. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Boissonnat, J.-D., Cérézo, A., Leblond, J.: Shortest paths of bounded curvature in the plane. J. Intell. Robot. Syst. 11(1–2), 5–20 (1994)

    Article  MATH  Google Scholar 

  4. Benamou, J.-D., Collino, F., Mirebeau, J.-M.: Monotone and consistent discretization of the Monge–Ampere operator. Math. Comput. 85(302), 2743–2775 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benmansour, F., Carlier, G., Peyré, G., Santambrogio, F.: Derivatives with respect to metrics and applications: subgradient marching algorithm. Numer. Math. 116(3), 357–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bekkers, E.J., Duits, R., Mashtakov, A., Sanguinetti, G.R.: A PDE approach to data-driven sub-Riemannian geodesics in SE (2). SIAM J. Imaging Sci. 8(4), 2740–2770 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boscain, U., Duits, R., Rossi, F., Sachkov, Y.: Curve cuspless reconstruction via sub-Riemannian geometry. ESAIM: Control Optim. Calc. Var. 20(3), 748–770 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bardi, M., Evans, L.C.: On Hopf’s formulas for solutions of Hamilton–Jacobi equations. Nonlinear Anal. Theory Methods Appl. Int. Multidiscip. J. Ser. A Theory Methods 8(11), 1373–1381 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bost, J.-B., Künnemann, K.: Hermitian vector bundles and extension groups on arithmetic schemes. I. Geometry of numbers. Adv. Math. 223(3), 987–1106 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonnans, J.F., Ottenwaelter, E., Zidani, H.: A fast algorithm for the two dimensional HJB equation of stochastic control. ESAIM Math. Model. Numer. Anal. 38(4), 723–735 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bornemann, F., Rasch, C.: Finite-element discretization of static Hamilton–Jacobi equations based on a local variational principle. Comput. Vis. Sci. 9(2), 57–69 (2006)

    Article  MathSciNet  Google Scholar 

  12. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vis. 24(1), 57–78 (1997)

    Article  Google Scholar 

  13. Chen, D., Mirebeau, J.-M., Cohen, L.D.: Global minimum for curvature penalized minimal path method. In: Xie, X., Jones, M.W., Tam, G.K.L. (eds.) Proceedings of the British Machine Vision Conference (BMVC), pp. 86.1–86.12. BMVA Press (2015)

  14. Chen, D., Mirebeau, J.-M., Cohen, L.D.: A new finsler minimal path model with curvature penalization for image segmentation and closed contour detection. In: Computer Vision and Pattern Recognition (CVPR), pp. 355–363 (2016)

  15. Chen, D., Mirebeau, J.-M., Cohen, L.D.: Finsler Geodesics Evolution Model for Region based Active Contours. In Wilson, R.C., Hancock, E.R., Smith, W.A.P. (eds.) Proceedings of the British Machine Vision Conference (BMVC), pp. 22.1–22.12. BMVA Press (2016)

  16. Chen, D., Mirebeau, J.-M., Cohen, L.D.: Global minimum for a finsler elastica minimal path approach. Int. J. Comput. Vis. 122(3), 458–483 (2017)

    Article  MathSciNet  Google Scholar 

  17. Conway, J.H., Sloane, N.J.A.: Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices. Proc. R. Soc. A Math. Phys. Eng. Sci. 436(1896), 55–68 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Campbell, J.S.W., Siddiqi, K., Rymar, V.V., Sadikot, A.F., Pike, G.B.: Flow-based fiber tracking with diffusion tensor and q-ball data: validation and comparison to principal diffusion direction techniques. NeuroImage 27(4), 725–736 (2005)

    Article  Google Scholar 

  19. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  20. Duits, R., Boscain, U., Rossi, F., Sachkov, Y.: Association fields via cuspless sub-Riemannian geodesics in SE(2). J. Math. Imaging Vis. 49(2), 384–417 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duits, R., Meesters, S.P.L., Mirebeau, J.-M., Portegies, J.M.: Optimal Paths for Variants of the 2D and 3D Reeds–Shepp Car with Applications in Image Analysis (2016). arXiv:1612.06137

  22. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79, 497–516 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  23. Euler, L.: Methodus inveniendi Lineas curvas maximi minive proprietate gaudentes. Lausanne: Bousquet (1744)

  24. Fuster, A., Haije, T.D., Tristán-Vega, A., Plantinga, B., Westin, C.-F., Florack, L.: Adjugate diffusion tensors for geodesic tractography in white matter. J. Math. Imaging Vis. 54(1), 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Féjer, L.: On the infinite sequences arising in the theories of harmonic analysis, of interpolation, and of mechanical quadratures. Bull. Am. Math. Soc. 39(8), 521–534 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fehrenbach, J., Mirebeau, J.-M.: Sparse non-negative stencils for anisotropic diffusion. J. Math. Imaging Vis. 49(1), 123–147 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jbabdi, S., Bellec, P., Toro, R., Daunizeau, J., Pélégrini-Issac, M., Benali, H.: Accurate anisotropic fast marching for diffusion-based geodesic tractography. J. Biomed. Imaging 2008(1–2), 2–12 (2008)

    Google Scholar 

  28. Kimmel, R., Kiryati, N., Bruckstein, A.M.: Multivalued distance maps for motion planning on surfaces with moving obstacles. IEEE Trans. Robot. Autom. 14(3), 427–436 (1998)

    Article  Google Scholar 

  29. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  30. Liao, W., Rohr, K., Wörz, S.: Globally optimal curvature-regularized fast marching for vessel segmentation. In: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013. Springer, Berlin, Heidelberg, pp. 550–557 (2013)

  31. Li, H., Yezzi, A.: Vessels as 4-D curves: global minimal 4-D paths to extract 3-D tubular surfaces and centerlines. IEEE Trans. Med. Imaging 26(9), 1213–1223 (2007)

    Article  Google Scholar 

  32. Mirebeau, J.-M., Dreo, J.: Automatic differentiation of non-holonomic fast marching for computing most threatening trajectories under sensors surveillance. In: Nielsen, F., Barbaresco, F. (eds.) Proceedings of Third International Conference on Geometric Science of Information (GSI). Paris, France (2017)

  33. Mirebeau, J.-M.: Anisotropic fast-marching on cartesian grids using lattice basis reduction. SIAM J. Numer. Anal. 52(4), 1573–1599 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mirebeau, J.-M.: Efficient fast marching with Finsler metrics. Numer. Math. 126(3), 515–557 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mirebeau, J.-M.: Minimal stencils for discretizations of anisotropic PDEs preserving causality or the maximum principle. SIAM J. Numer. Anal. 54(3), 1582–1611 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mirebeau, J.-M.: Anisotropic fast-marching on cartesian grids using Voronoi’s first reduction of quadratic forms. HAL (Preprint), April (2017)

  37. Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications. American Mathematical Soc, Providence (2006)

    Book  MATH  Google Scholar 

  38. Melonakos, J., Pichon, E., Angenent, S., Tannenbaum, A.: Finsler active contours. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 412–423 (2008)

    Article  Google Scholar 

  39. Mumford, D.: Elastica and computer vision. In: Bajaj, C.L. (ed.) Algebraic Geometry and its Applications, pp. 491–506. Springer, Berlin (1994)

  40. Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited. In: Buell, D. (ed.) ANTS, pp. 338–357. Springer, Berlin (2004)

  41. Oberman, A.M.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pechaud, M., Keriven, R., Peyré, G.: Extraction of tubular structures over an orientation domain. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), pp. 336–342. IEEE (2009)

  43. Peyré, G., Pechaud, M., Keriven, R.: Geodesic methods in computer vision and graphics. Found. Trends® Comput. Graph. Vis. 5(3–4), 197–397 (2010)

    MATH  Google Scholar 

  44. Parker, G.J.M., Wheeler-Kingshott, C.A.M., Barker, G.J.: Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE Trans. Med. Imaging 21(5), 505–512 (2002)

    Article  Google Scholar 

  45. Randers, G.: On an asymmetrical metric in the four-space of general relativity. Phys. Rev. 59(2), 195–199 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  46. Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145(2), 367–393 (1990)

    Article  MathSciNet  Google Scholar 

  47. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sachkov, Y.L.: Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim. Calc. Var. 17(2), 293–321 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sanguinetti, G., Bekkers, E., Duits, R., Janssen, M.H.J., Mashtakov, A., Mirebeau, J.-M.: Sub-Riemannian fast marching in SE (2). In: Pardo, A., Kittler, J. (eds.) Iberoamerican Congress on Pattern Recognition, pp. 366–374. Springer, Cham (2015)

  50. Schürmann, A.: Computational geometry of positive definite quadratic forms. Polyhedral reduction theories, algorithms, and applications. In: University Lecture Series, vol. 48, pp. xvi+162. American Mathematical Society, Providence, RI (2009)

  51. Selling, E.: Ueber die binären und ternären quadratischen Formen. J. Reine Angew. Math. 77, 143–229 (1874)

    MathSciNet  MATH  Google Scholar 

  52. Schober, M., Kasenburg, N., Feragen, A., Hennig, P., Hauberg, S.: Probabilistic shortest path tractography in DTI using gaussian process ode solvers. In: Medical image computing and computer-assisted intervention—MICCAI 2014, pp. 265–272. Springer, Cham, September (2014)

  53. Strandmark, P., Ulen, J., Kahl, F., Grady, L.: Shortest paths with curvature and torsion. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 2024–2031. IEEE (2013)

  54. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40(9), 1528–1538 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  55. Weber, O., Devir, Y.S., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Parallel algorithms for approximation of distance maps on parametric surfaces. ACM Trans. Graph.: TOG 27(4), 104–116 (2008)

    Article  Google Scholar 

  56. Zach, C., Shan, L., Niethammer, M.: Globally optimal finsler active contours. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Rangan, C.P., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Denzler, J., Notni, G., Süße, H. (eds) DAGM-Symposium, pp. 552–561. Springer, Berlin (2009)

Download references

Acknowledgements

The author thanks Da-Chen(Post-Doctoral researcher at University Paris-Dauphine.), Jorg Portegies(Ph.D. student under the direction of R. Duits at TU/e University, Eindhoven.) and Erik Bekkers(Post-Doctoral researcher at TU/e University, Eindhoven.), for careful testing, bug-fixing, and feedback on the numerical codes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Mirebeau.

Additional information

This work was partly supported by ANR research Grant MAGA, ANR-16-CE40-0014.

Appendices

Appendix A: Local Validation of the Numerical Scheme, via the Control Sets

We present a local validation of our PDE discretization procedure, by comparing the model control sets (4), see also Fig. 2, with some numerical counterparts.

Consider a compact and convex set \(\mathcal{B}\subseteq {\mathbb E}= {\mathbb R}^3\), containing the origin, and the corresponding Hamiltonian \(\mathcal{H}\). Contrary to the rest of this paper, the possible dependency of \(\mathcal{B}\) and \(\mathcal{H}\) on some underlying base point \({\mathbf p}\in {\mathbb M}\) is not considered, since the discussion is purely local. Let also H be an approximation of \(\mathcal{H}\), for instance of the form (15). Consider the set

$$\begin{aligned} B := \{\dot{\mathbf p}\in {\mathbb E};\, \forall \hat{\mathbf p}\in {\mathbb E}^*,\, H(\hat{\mathbf p}) \le 1/2 \Rightarrow \langle \hat{\mathbf p}, \dot{\mathbf p}\rangle \le 1\}, \end{aligned}$$
(63)

and note that \(B=\mathcal{B}\) if \(H=\mathcal{H}\). We regard the closeness of B and \(\mathcal{B}\), inspected visually, as a good witness of the closeness of H and \(\mathcal{H}\).

In Fig. 13, left, is illustrated the case where \(\mathcal{B}\) is an ellipsoid, with principal axes of length (1, 0.1, 0.1). In that case \(\mathcal{H}\) is a quadratic function, and the discrete representation using Corollary 4.13 is exact. One therefore has \(H=\mathcal{H}\), thus \(B=\mathcal{B}\) as can be observed. This particular case is at the foundation of [36].

In Fig. 13, right, is illustrated the case where \(\mathcal{B}= [0,\dot{\mathbf n}]\) is a segment, where \(\dot{\mathbf n}\in {\mathbb E}\) is a unit vector, and therefore \(\mathcal{H}(\hat{\mathbf p}) = \frac{1}{2} \langle \hat{\mathbf p},\dot{\mathbf n}\rangle _+^2\). The discretization is performed using Proposition 2.2 with \(\varepsilon =0.1\), via the basis reduction techniques presented in Sect. 4. As can be observed, the vectors \(\dot{\mathbf e}_k\), \(1 \le k \le K\), are almost aligned with \(\dot{\mathbf n}\), and the set B is close to the segment \(\mathcal{B}\) in the Hausdorff distance, although slightly fatter.

Figure 14 is devoted to the models of interest in this paper. The parameters are \(\xi =0.2\) [appearing in the curvature cost (2)], \(\theta =\pi /3\) (the current orientation), and \(\varepsilon =0.1\) (tolerance in Proposition 2.2). The offsets \(\dot{\mathbf e}_k\), \(1\le k \le K\), are illustrated in Fig. 4 page 7. Comparing with Fig. 2, we can confirm that the sets B are close to the corresponding ellipse,Footnote 10 half ellipse, non-centered ellipse, and triangle \(\mathcal{B}\), respectively. However the true control sets \(\mathcal{B}\) are flat, with Haussdorff dimension 2, whereas their counterparts B are slightly fatter.

Fig. 13
figure 13

Illustration of Appendix A. Left: Discretization stencil for a quadratic anisotropic Hamiltonian. The Hamiltonian and control set representation are exact. Right: Discretization stencil of Proposition 2.2, for a Hamiltonian \(\mathcal{H}(\hat{\mathbf p}) = \frac{1}{2} \langle \hat{\mathbf p},\dot{\mathbf n}\rangle _+^2\). The approximate control set (63) is close to the segment \([0,\dot{\mathbf n}]\), but slightly fatter

Fig. 14
figure 14

Approximate control set (63) for the Reeds–Shepp reversible, Reeds–Shepp forward, Euler–Mumford and Dubins models. The shapes of the original control sets, see Fig. 2, are recognizable, elongated due to the model parameter choice \(\xi =0.2\), and slightly fatter due to the effect of discretization, with relaxation parameter \(\varepsilon =0.1\). Orientation \(\theta = \pi /3\). Seed Fig. 3 for the corresponding stencils

Appendix B: Convexity of the Metric

We prove in this appendix that the metrics \(\mathcal{F}^{\text {RS}+}_{\mathbf p}, \mathcal{F}^\text {EM}_{\mathbf p},\mathcal{F}^\text {D}_{\mathbf p}: {\mathbb E}\rightarrow [0,\infty ]\) are convex, for any fixed \({\mathbf p}\in \Omega \), due to their construction (3) and to the following two results.

Lemma B.1

Let \(\mathcal{C}: {\mathbb R}\rightarrow [1,\infty ]\) be convex and lower semi-continuous, and let \(f : ]0,\infty [ \times {\mathbb R}\rightarrow [0,\infty ]\) be defined by \(f(n,t):= n \mathcal{C}(t/n)\).

Then, f is lower semi-continuous, 1-positively homogeneous, everywhere positive, and obeys the triangular inequality.

Proof

Lower semi-continuity, homogeneity and positivity are obvious. In addition for any \((n,t),(n',t') \in ]0,\infty [\times {\mathbb R}\), one obtains

$$\begin{aligned} \frac{f(n+n',t+t')}{n+n'}= & {} \mathcal{C}\left( \frac{t}{n} \frac{n}{n+n'} + \frac{t'}{n'} \frac{n'}{n+n}\right) \\\le & {} \frac{n}{n+n'} \mathcal{C}\left( \frac{t}{n}\right) \\&+ \frac{n'}{n+n'} \mathcal{C}\left( \frac{t'}{n'}\right) {=} \frac{f(n,t)+f(n',t')}{n+n'}. \end{aligned}$$

\(\square \)

Note that 1-positive homogeneity and the triangular inequality together imply convexity. We recall the notation \({\mathbb E}:= {\mathbb R}^2 \times {\mathbb R}\), used in the next result.

Corollary B.2

Let \(\mathcal{C}: {\mathbb R}\rightarrow [1,\infty ]\) be convex, lower semi-continuous, and such that \(l(\varepsilon ) := \lim \mathcal{C}(\varepsilon t)/t\) as \(t\rightarrow \infty \) exists and belongs to \(]0,\infty ]\), for each \(\varepsilon \in \{-1,1\}\). Let \(F : {\mathbb E}\rightarrow [0,\infty ]\) be defined as \(F(\dot{\mathbf x}, \dot{\theta }) := \Vert \dot{\mathbf x}\Vert \mathcal{C}(\dot{\theta }/\Vert \dot{\mathbf x}\Vert )\) for each \((\dot{\mathbf x}, \dot{\theta }) \in {\mathbb E}\) such that \(\dot{\mathbf x}= \Vert \dot{\mathbf x}\Vert {\mathbf n}\) and \(\Vert \dot{\mathbf x}\Vert >0\), where \({\mathbf n}\in {\mathbb S}^{d-1}\) is a fixed direction. Let also \(F(0,0) = 0\), \(F(0,\dot{\theta }) = |\dot{\theta }| l(\dot{\theta }/|\dot{\theta }|)\) if \(\dot{\theta }\ne 0\), and \(F( \dot{\mathbf x}, \dot{\theta }) := +\,\infty \) otherwise. Then, F is lower semi-continuous and obeys

  • (1-positive homogeneity\()\,F(\lambda \dot{\mathbf p}) = \lambda F(\dot{\mathbf p})\), for all \(\lambda >0\) and all \(\dot{\mathbf p}\in {\mathbb E}\).

  • (Separation\()\,F(\dot{\mathbf p})=0\) iff \(\dot{\mathbf p}= 0\), for all \(\dot{\mathbf p}\in {\mathbb E}\).

  • (Triangular inequality\()\,F(\dot{\mathbf p}+\dot{\mathbf q}) \le F(\dot{\mathbf p})+F(\dot{\mathbf q})\), for all \(\dot{\mathbf p}, \dot{\mathbf q}\in {\mathbb E}\).

Proof

By the previous lemma, F obeys the announced properties on the convex set \((]0,\infty [ {\mathbf n}) \times {\mathbb R}\). These properties are also satisfied on the closure \(([0,\infty [ {\mathbf n}) \times {\mathbb R}\) since, clearly, F is extended to it by its lower continuous envelope, and since the limits l(1) and \(l(-1)\) are positive (for separation). Finally, the announced properties hold for the trivial extension of F to \({\mathbb R}^2 \times {\mathbb R}\) by \(+\,\infty \) since the subset \(([0,\infty [{\mathbf n}) \times {\mathbb R}\) is closed and convex. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirebeau, JM. Fast-Marching Methods for Curvature Penalized Shortest Paths. J Math Imaging Vis 60, 784–815 (2018). https://doi.org/10.1007/s10851-017-0778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0778-5

Keywords

Navigation