Skip to main content
Log in

The Bi-Hamiltonian Theory of the Harry Dym Equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe how the Harry Dym equation fits into the the bi-Hamiltonian formalism for the Korteweg–de Vries equation and other soliton equations. This is achieved using a certain Poisson pencil constructed from two compatible Poisson structures. We obtain an analogue of the Kadomtsev–Petviashivili hierarchy whose reduction leads to the Harry Dym hierarchy. We call such a system the HD–KP hierarchy. We then construct an infinite system of ordinary differential equations (in infinitely many variables) that is equivalent to the HD–KP hierarchy. Its role is analogous to the role of the Central System in the Kadomtsev–Petviashivili hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Kruskal, “Nonlinear wave equations,” in: Dynamical Systems, Theory and Applications (Lect. Notes Phys., Vol. 38, J. Moser, ed.), Springer, Berlin (1975), pp. 310–354.

    Google Scholar 

  2. P. C. Sabatier, Lett. Nuovo Cimento (2), 26(15), 483–486 (1979); 26(15), 477–482 (1979); P. C. Sabatier, “Around the classical string problem,” in: Nonlinear Evolution Equations and Dynamical Systems (Lect. Notes Phys., Vol. 120, M. Boiti et al., eds.), Springer, Berlin (1980), pp. 85–102.

    Google Scholar 

  3. C. Rogers, Phys. Lett. A, 120, 15–18 (1987); Ben Yu Guo and C. Rogers, Sci. China Ser. A, 32, 283–295 (1989); V. G. Dubrovsky and B. G. Konopelchenko, J. Phys. A, 27(13), 4619–4628 (1994); B. G. Konopelchenko and Jyh-Hao Lee, Theor. Math. Phys., 99, 337–344 (1994); O. Ragnisco and S. Rauch-Wojciechowski, J. Math. Phys., 35, 834–847 (1994); B. G. Konopelchenko and Jyh-Hao Lee, Phys. D, 81, 32–43 (1995).

    Google Scholar 

  4. W. Oevel and S. Carillo, J. Math. Anal. Appl., 217, 161–178, 179–199 (1998).

    Google Scholar 

  5. P. Casati, G. Falqui, F. Magri, and M. Pedroni, J. Math. Phys., 38, 4606–4628 (1997).

    Google Scholar 

  6. G. Falqui, F. Magri, and M. Pedroni, Comm. Math. Phys., 197, 303–324 (1998).

    Google Scholar 

  7. P. Casati, G. Falqui, F. Magri, and M. Pedroni, J. Geom. Phys., 26, 291–310 (1998).

    Google Scholar 

  8. F. Magri, M. Pedroni, and J. P. Zubelli, Comm. Math. Phys., 188, 305–325 (1997).

    Google Scholar 

  9. G. Falqui, F. Magri, M. Pedroni, and J. P. Zubelli, Theor. Math. Phys., 122, 17–28 (2000).

    Google Scholar 

  10. P. Casati, G. Falqui, F. Magri, and M. Pedroni, Lett. Math. Phys., 41, 291–305 (1997).

    Google Scholar 

  11. G. Falqui, M. Pedroni, F. Magri, and P. Casati, “Soliton equations, bi-Hamiltonian manifolds, and integrability,” Preprint, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro (1997).

    Google Scholar 

  12. P. Casati, G. Falqui, F. Magri, M. Pedroni, and J. P. Zubelli, Contemp. Math., 15, 45–65 (1998).

    Google Scholar 

  13. F. Magri and M. Pedroni, “KdV equations, KP equations, and bi-Hamiltonian manifolds,” in: Proc. 8th Intl. Conf. on Waves and Stability in Continuous Media, Palermo, Italy, October 9–14, 1995: Part 1 (Suppl. Rend. Circ. Mat. Palermo. II, Ser. 45, A. M. Greco et al., eds.), Circolo Matematico di Palermo, Palermo (1996), pp. 377–392.

    Google Scholar 

  14. G. Falqui, F. Magri, and M. Pedroni, J. Nonlinear Math. Phys., 8 Suppl., 118–127 (2001).

    Google Scholar 

  15. R. M. Miura, C. S. Gardner, and M. D. Kruskal, J. Math. Phys., 9, 1204–1209 (1968).

    Article  Google Scholar 

  16. F. Magri, “A geometrical approach to the nonlinear solvable equations.,” in: Nonlinear Evolution Equations and Dynamical systems (Lect. Notes Phys., Vol. 120, M. Boiti et al., eds.), Springer, Berlin (1980), pp. 233–263; I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester, UK (1993).

    Google Scholar 

  17. L. A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, River Edge, N. J. (1991).

    Google Scholar 

  18. P. Casati, B. Konopelchenko, and M. Pedroni, Contemp. Math., 18, 59–75 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedroni, M., Sciacca, V. & Zubelli, J.P. The Bi-Hamiltonian Theory of the Harry Dym Equation. Theoretical and Mathematical Physics 133, 1585–1597 (2002). https://doi.org/10.1023/A:1021111213874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021111213874

Navigation