Skip to main content
Log in

A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

A Lax pair for the KdV equation is derived by a transformation of the eigenfunction. By a polynomial expansion of the eigenfunction for the resulting Lax pair, finite-dimensional integrable systems can be obtained from the Lax pair. These integrable systems are proved to be the Hamiltonian and are shown to have a new Poisson structure such that the entries of its structure matrix are a mixture of linear and quadratic functions of coordinates. The odd and even functions of the spectral parameter are introduced to build a generating function for conserved integrals. Based on the generating function, the integrability of these Hamiltonian systems is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skij, A. R. Its, and V. B. Matveev, Algebro-geometrical Approach to Nonlinear Evolution Equations (Springer Series in Nonlinear Dynamics), Springer, Berlin (1994).

    MATH  Google Scholar 

  2. F. Gesztesy and H. Holden, Soliton Equation and their Algebro-Geometric Solutions, Vol. 1: \((1+1)\)-Dimensional Continuous Models (Cambridge Studies in Advanced Mathematics, Vol. 79), Cambridge Univ. Press, Cambridge (2003).

    Book  MATH  Google Scholar 

  3. Y. Kodama, “Some remarks on the rational solutions of the Burgers equation,” Lett. Nuovo Cimento, 32, 401–406 (1981).

    Article  MathSciNet  Google Scholar 

  4. D. V. Choodnovsky and G. V. Choodnovsky, “Pole expansions of nonlinear partial differential equations,” Nuovo Cimento B, 40, 339–353 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  5. F. Calogero, “Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related ‘solvable’ many body problems,” Nuovo Cimento B, 43, 177–241 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  6. F. Calogero, “Zeros of rational functions and solvable nonlinear evolution equations,” J. Math. Phys., 59, 072701, 7 pp. (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. F. Calogero, Zeros of Polynomials and Solvable Nonlinear Evolution Equations, Cambridge Univ. Press, Cambridge (2018).

    Book  MATH  Google Scholar 

  8. J. F. Van Diejen, “On the zeros of the KdV soliton Baker–Akhiezer function,” Regul. Chaotic Dyn., 4, 103–111 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. F. Van Diejen and H. Puschmann, “Reflectionless Schrödinger operators, the dynamics of zeros, and the solitonic Sato formula,” Duke Math. J., 104, 269–318 (2000).

    MathSciNet  MATH  Google Scholar 

  10. P. D. Lax, “Periodic solution of the KdV equation,” Commun. Pure Appl. Math., 28, 141–188 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation,” Funct. Anal. Appl., 8, 236–246 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Flaschka, “Relations between infinite-dimensional and finite-dimensional isospectral equations,” in: Non-linear Integrable Systems – Classical Theory and Quantum Theory (Proceedings of RIMS Symposium, Kyoto, Japan, 13–16 May, 1981, M. Jimbo and T. Miwa, eds.), World Sci., Singapore (1983), pp. 219–239.

    Google Scholar 

  13. O. I. Mokhov, “The Hamiltonian property of an evolutionary flow on the set of stationary points of its integral,” Russian Math. Surveys, 39, 133–134 (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M. Antonowicz and S. Rauch-Wojciechowski, “Restricted flows of soliton hierarchies: coupled KdV and Harry Dym case,” J. Phys. A: Math. Gen., 24, 5043–5061 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M. Antonowicz and S. Rauch-Wojciechowski, “How to construct finite dimensional bi-Hamiltonian systems from soliton equations: Jacobi integrable potentials,” J. Math. Phys., 33, 2115–2125 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A. V. Bolsinov, A. M. Izosimov, and D. M. Tsonev, “Finite-dimensional integrable systems: a collection of research problems,” J. Geom. Phys., 115, 2–15 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. C. W. Cao and X. G. Geng, “Classical integrable systems generated through nonlinearization of eigenvalue problems,” in: Nonlinear Physics (Proceedings of the International Conference, Shanghai, China, April 24–30, 1989, Research Reports in Physics, C. Gu, Y. Li, and G. Tu, eds.), Springer, Berlin (1990), pp. 68–78.

    Chapter  Google Scholar 

  18. C. Cao and X. Geng, “C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy,” J. Phys. A: Math. Gen., 23, 4117–4125 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. R. Zhou, “The finite-band solution of the Jaulent–Miodek equation,” J. Math. Phys., 38, 2535–2546 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. C. Cao, Y. Wu, and X. Geng, “Relation between the Kadomtsev–Petviashvili equation and the confocal involutive system,” J. Math. Phys., 40, 3948–3970 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Z. Qiao, “A new completely integrable Liouville’s system produced by the Kaup–Newell eigenvalue problem,” J. Math. Phys., 34, 3110–3120 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Z. Zhou, W.-X. Ma, and R. Zhou, “Finite-dimensional integrable systems associated with the Davey–Stewartson I equation,” Nonlinearity, 14, 701–717 (2001); arXiv: nlin/0103045.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. C. Cao, “A classical integrable system and the involutive representation of solutions of the KdV equation,” Acta Math. Sinica (N. S.), 7, 216–223 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  24. Xiao Yang and Jiayan Han, “Algebraic-geometric solutions of the Dirac hierarchy,” Theoret. and Math. Phys., 193, 1894–1904 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. S. I. Alber, “On stationary problems for equations of Korteweg-de Vries type,” Commun. Pure Appl. Math., 34, 259–272 (1981).

    Article  MathSciNet  Google Scholar 

  26. V. E. Adler, I. T. Habibullin, and A. B. Shabat, “Boundary value problem for the KdV equation on a half-line,” Theoret. and Math. Phys., 110, 78–90 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. V. E. Adler, A. B. Shabat, and R. I. Yamilov, “Symmetry approach to the integrability problem,” Theoret. and Math. Phys., 125, 1603–1661 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  28. O. I. Bogoyavlenskii and S. P. Novikov, “The relationship between Hamiltonian formalisms of stationary and nonstationary problems,” Funct. Anal. Appl., 10, 8–11 (1976).

    Google Scholar 

  29. V. E. Zakharov and L. D. Faddeev, “Korteweg–de Vries equation: A completely integrable Hamiltonian system,” Funct. Anal. Appl., 5, 280–287 (1971).

    Article  MATH  Google Scholar 

  30. G. Tondo, “On the integrability of stationary and restricted flows of the KdV hierarchy,” J. Phys. A: Math. Gen., 28, 5097–5115 (1995); arXiv: solv-int/9507004.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. D. Du and C. Cao, “The Lie–Poisson representation of the nonlinearized eigenvalue problem of the Kac–van Moerbeke hierarchy,” Phys. Lett. A, 278, 209–224 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. X. Zeng and X. Geng, “Quasiperiodic solutions of the discrete Chen–Lee–Liu hierarchy,” Theoret. and Math. Phys., 179, 649–678 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. C. Cao, “Nonlinearization of the Lax system for AKNS hierarchy,” Sci. China Ser. A, 33, 528–536 (1990).

    MathSciNet  MATH  Google Scholar 

  34. D. Du and X. Yang, “An alternative approach to solve the mixed AKNS equations,” J. Math. Anal. Appl., 414, 850–870 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  35. V. Bargmann, “On the connection between phase shifts and scattering potential,” Rev. Modern Phys., 21, 488–493 (1949).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. G. L. Lamb, Jr., Elements of Soliton Theory, Wiley, New York (1980).

    Google Scholar 

  37. S. V. Manakov, “The inverse scattering transform for the time-dependent Schrödinger equation and Kadomtsev–Petviashvili equation,” Phys. D, 3, 420–427 (1981).

    Article  MATH  Google Scholar 

  38. A. S. Fokas and M. J. Ablowitz, “On the inverse scattering on the time-dependent Schrödinger equation and the associated Kadomtsev–Petviashvili equation,” Stud. Appl. Math., 69, 211–228 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  39. S. P. Novikov, V. Manakov, L. P. Pitaevskij, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Plenum Press, New York (1984).

    Google Scholar 

  40. V. A. Arkad’ev, A. K. Pogrebkov, and M. K. Polivanov, “Expansions with respect to squares, symplectic and poisson structures associated with the Sturm–Liouville problem. I,” Theoret. and Math. Phys., 72, 909–920 (1987).

    Article  ADS  MATH  Google Scholar 

  41. V. A. Arkad’ev, A. K. Pogrebkov, and M. K. Polivanov, “Expansions with respect to squares, symplectic and poisson structures associated with the Sturm–Liouville problem. II,” Theoret. and Math. Phys., 75, 448–460 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. V. M. Buchstaber and A. V. Mikhailov, “KdV hierarchies and quantum Novikov’s equations,” arXiv: 2109.06357.

  43. P. J. Olver, Applications of Lie Groups to Differential Equations (Graduate Texts in Mathematics, Vol. 107), Springer, New York (1993).

    Book  MATH  Google Scholar 

  44. D. Du and X. Geng, “Action-angle variables for the Lie–Poisson Hamiltonian systems associated with Boussinesq equation,” Commun. Nonlinear Sci. Numer. Simul., 30, 168–181 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  45. D. Du and X. Geng, “Symplectic realizations and action-angle coordinates for the Lie–Poisson system of Dirac hierarchy,” Appl. Math. Comput., 244, 222–234 (2014).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to the anonymous referees whose comments helped to improve the presentation of the paper.

Funding

This work was supported by National Natural Science Foundation of China (project No. 11271337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Wang.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 211, pp. 361–374 https://doi.org/10.4213/tmf10147.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, D., Wang, X. A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation. Theor Math Phys 211, 745–757 (2022). https://doi.org/10.1134/S0040577922060010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922060010

Keywords

Navigation