Skip to main content
Log in

Cuprate/Ferromagnetic Oxide Superlattices

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

YBa2Cu3O7/La0.67Ca0.33MnO3 as well as YBa2Cu3O7/SrRuO3 superlattices have been grown by pulsed laser deposition with individual layer thickness ranging from 4 to 200 unit cells for the YBa2Cu3O7 and 10 to 500 unit cells for the magnetic oxides. Whereas simple heterostructures reproduce the intrinsic properties of the constituent material rather well with reduced critical temperatures for the magnetic and superconducting phase transitions, the critical temperatures systematically vary with the superlattice composition. The introduction of a SrTiO3 spacer layer between the YBCO and LCMO film, respectively, causes a shift of the critical temperatures close to the intrinsic values again. The results are discussed in view of the interaction effects at the electronic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Maple and ø. Fischer, eds., Superconductivity in Ternary Compounds II (Springer, Berlin, 1982), Topics in Current Physics, Vol. 34.

  2. M. B. Maple, Physica C 341–348, 47(2000).

    Google Scholar 

  3. L. Bauernfeind, W. Widder, and H.-F. Braun, Physica C 254, 151(1995).

    Google Scholar 

  4. C. Bernhard, J. L. Tallon, Ch. Niedermayer, A. Golnik, E. Brücher, R. K. Kremer, D. R. Noakes, C. E. Stronach, and J. Ansaldo, Phys. Rev. B 59, 14099(1999).

    Google Scholar 

  5. C. W. Chu, Physica C 341–348, 25(2000).

    Google Scholar 

  6. I. Felner, Physica C 341–348, 25(2000).

    Google Scholar 

  7. J. Lynn, B. Keimer, C. Ulrich, C. Bernhard, and J. L. Tallon, Phys. Rev. B 61, R 14964(2000).

    Google Scholar 

  8. J. E. Mattson, C. D. Potter, M. J. Conover, C. H. Sowers, and S. D. Bader, Phys. Rev. B 55, 70(1997).

    Google Scholar 

  9. M. Kasai, T. Ohno, Y. Kanke, Y. Kozono, M. Hanazono, and Y. Sugita, Jpn. J. Appl. Phys. 29, L 2219(1990).

    Google Scholar 

  10. G. Jakob, V. V. Moschalkov, and Y. Bruynseraede, Appl. Phys. Lett. 66, 2564(1995).

    Google Scholar 

  11. A. M. Goldman, V. Vaśko, P. Kraus, K. Nikolaev, and V. A. Larkin, J. Magn. Magn. Mater. 200, 69(1999).

    Google Scholar 

  12. D. Dijkamp and T. Venkatesan, Appl. Phys. Lett. 51, 619(1987).

    Google Scholar 

  13. H.-U. Habermeier, Eur. J. Solid State Inorg. Chem. 28, 201(1991).

    Google Scholar 

  14. H.-U. Habermeier and G. Cristiani, to be published.

  15. R. B. Praus, B. Leibold, G. M. Gross, and H.-U. Habermeier, Appl. Surf. Sci. 138–139, 40(1999).

    Google Scholar 

  16. C. Bernhard, H.-U. Habermeier, T. Holden, and G. Cristiani, private communication, to be published.

  17. C. A. R. Sa de Melo, Phys. Rev. Lett. 79, 1933(1997).

    Google Scholar 

  18. D. H. Lowndes, D. P. Norton, and J. D. Budai, Phys. Rev. Lett. 65, 1160(1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habermeier, HU., Cristiani, G. Cuprate/Ferromagnetic Oxide Superlattices. Journal of Superconductivity 15, 425–431 (2002). https://doi.org/10.1023/A:1021098920016

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021098920016

Navigation