Skip to main content
Log in

Proportions of Ca2+ Channel Subtypes in Chick or Rat P2 Fraction and NG108-15 Cells Using Various Ca2+ Blockers

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The proportions of calcium (Ca2+) channel subtypes in chick or rat P2 fraction and NG 108-15 cells were investigated using selective L-, N-, P- and P/Q- type Ca2+ channel blockers. KCl-stimulated 45Ca2+ uptake by chick P2 fraction was blocked by 40~50% using N-type Ca2+ channel blockers [ω-conotoxin GVIA, aminoglycoside antibiotics and dynorphin A(1–13)], but was not inhibited by P- or P/Q-type blockers (ω-agatoxin IVA or ω-conotoxin MVIIC). On the other hand, KCl-stimulated 45Ca2+ uptake by rat P2 fraction was blocked by 30~40% using P- or P/Q-type Ca2+ channel blockers, but was not inhibited by N-type Ca2+ channel blockers. The L-type Ca2+ channel blockers 1,4-dihydropyridines, diltiazem and verapamil, but not calciseptine (CaS), inhibited both KCl-stimulated 45Ca2+ uptake and veratridine-induced 22Na+ uptake by chick or rat P2 fraction with similar IC50 values. CaS did not have any effect on 45Ca2+ uptake by either chick or rat P2 fraction. In NG108-15 cells, CaS, ω-agatoxin IVA and ω-conotoxin MVIIC, but not ω-conotoxin GVIA, inhibited KCl-stimulated 45Ca2+ uptake by 30–40%. Various combinations of these Ca2+ channel blockers had no significant additional effects in chick or rat P2 fraction or NG 108-15 cells. These findings suggest that KCl-stimulated 45Ca2+ uptake by chick or rat P2 fraction and NG 108-15 cells is a convenient and useful model for screening whether or not natural or synthetic substances have selective effects as L-, N-, P-, or P/Q- type Ca2+ channel antagonists or agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tsien, R. W., Ellinor, P. T. and Horne, W. A. 1991. Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol. Sci. 12:349–354.

    Google Scholar 

  2. Miller, R. J. 1992. Voltage-sensitive Ca2+ channels. J. Biol. Chem. 267:1403–1406.

    Google Scholar 

  3. Randall, A. and Tsien, R. W. 1995. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J. Neurosci. 15:2995–3012.

    Google Scholar 

  4. Varadi, G., Mori, Y., Mikala, G. and Schwartz, A. 1995. Molecular determinants of Ca2+ channel function and drug action. Trends Pharmacol. Sci. 16:43–49.

    Google Scholar 

  5. Collins, F. and Lile, J. D. 1989. The role of dihydropyridine-sensitive voltage-gated calcium channels in potassium-mediated neuronal survival. Brain Res. 502:99–108.

    Google Scholar 

  6. Silver, R. A., Lamb, A. G. and Bolsover, S. R. 1990. Calcium hotspots caused by L-channel clustering promote morphological changes in neuronal growth cones. Nature, 343:751–754.

    Google Scholar 

  7. Weille, J. R., Schweitz, H., Maes, P., Tartar, A. and Lazdunski, M. 1991. Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. Proc. Natl. Acad. Sci. U.S.A. 88:2437–2440.

    Google Scholar 

  8. Triggle, D. J. and Janis, R. A. 1987. Calcium channel ligands. Annu. Rev. Pharmacol. Toxicol. 27:347–369.

    Google Scholar 

  9. Godfraind, T., Miller, R. J. and Wibo, M. 1986. Calcium antagonism and calcium entry blockade. Pharmacol. Rev. 38:321–416.

    Google Scholar 

  10. Hosey, M. M. and Lazdunski, M. 1988. Calcium channels: molecular pharmacology structure and regulation. J. Membr. Biol. 104:81–105.

    Google Scholar 

  11. Oyama, Y., Tsuda, Y., Sakakibara, S. and Akaike, N. 1987. Synthetic omega-conotoxin: a potent calcium channel blocking neurotoxin. Brain Res. 424:58–64.

    Google Scholar 

  12. Mintz, I. M., Venema, V. J., Swiderek, K. M., Lee, T. D., Bean, B. P. and Adams, M. E. 1992. P-type calcium channels blocked by the spider toxin omega-Aga-IVA. Nature. 355:827–829.

    Google Scholar 

  13. Hillyard, D. R., Monje, V. D., Mintz, I. M., Bean, B. P., Nadasdi, L., Ramachandran, J., Miljanich, G., Azimi-Zoonooz, A., McIntosh, J. M. and Cruz, L. J. 1992. A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron. 9: 69–77.

    Google Scholar 

  14. Mishra, S. K. and Hermsmeyer, K. 1994. Selective inhibition of T-type Ca2+ channel by Ro40-5967. Circ. Res. 75:144–148.

    Google Scholar 

  15. Ichida, S., Wada, T., Akimoto, T., Kasamatsu, Y., Tahara, M. and Hashimoto, K. 1995. Characteristics of specific 125|-ω-conotoxin GVIA binding and 125|-ω-conotoxin GVIA labeling using bifunctional crosslinkers in crude membranes from chick whole brain. Biochim. Biophys. Acta. 1233:57–67.

    Google Scholar 

  16. Gray, E. F. and Whittaker, V. P. 1962. The isolation of nerve endings from brain: an electron microscopic study of cell fragments derived by homogenization and centrifugation. J Anat. 96:79–88.

    Google Scholar 

  17. Ichida, S., Osugi, T. and Yoshida, H. 1981. Does endogenous cyclic GMP inhibit potassium-stimulated 45Ca uptake by P2 fraction from rat brain?. Life Sci. 29:963–970.

    Google Scholar 

  18. Ichida, S., Yonehara, N., Watanabe, Y. and Yoshida, H. 1980. Inhibitory effect of dibutyryl cyclic GMP on potassium 45Ca uptake by synaptosomes from rat brain. Brain Res. 192:487–494.

    Google Scholar 

  19. Francois, C., Nicole, M. M., Annette, K. and Yoheved, B. N. 1986. Neurotoxin-sensitive sodium channels in neurons developing in vivo and in vitro. J. Neurosci. 6:192–198.

    Google Scholar 

  20. Ichida, S., Matsuda, N., Nakazaki, S., Kishino, H., Wada, T. and Akimoto, T. 1993. Characteristics of 45Ca uptake stimulated by high KCl of differentiated and undifferentiated NG108-15 and PC-12h cells. Neurochem. Res. 18:625–632.

    Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  22. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76–85.

    Google Scholar 

  23. Nachshen, D. and Blaustein, M. 1980. Some properties of potassium-stimulated calcium influx in presynaptic nerve ending. J. Gen. Physiol. 76:709–728.

    Google Scholar 

  24. Lentzner, A., Bykov, V. and Bartschat, D. 1992. Time-resolved changes in intracellular calcium following depolarization of rat brain synaptosomes. J. Physiol. (London), 450:613–628.

    Google Scholar 

  25. Daniell, L. C. and Leslie, S. W. 1986. Correlation of rates of calcium entry and release of endogenous norepinephreine in rat brain region synaptosomes. J. Neurochem. 46:249–256.

    Google Scholar 

  26. Adam-Vizi, V. and Ashley, R. H. 1987. Relation of acetylcholine release to Ca2+ uptake and intraterminal Ca2+ concentration in guinea-pig cortex synaptosomes. J. Neurochem. 49:1013–1021.

    Google Scholar 

  27. Uchitel, O., Protti, D., Sanchez, V., Cherksey, B., Sugimori, M. and Llinas, R. 1992. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc. Natl. Acad. Sci. U.S.A. 89:3330–3333.

    Google Scholar 

  28. Rivier, J., Galyean, R., Gray, W., Azimi-Zonooz, A., Mcintosh, M., Cruz, L. and Olivera, B. 1987. Neuronal calcium channel inhibitors. J. Biol. Chem. 262:1194–1198.

    Google Scholar 

  29. Maubecin, V. A., Sanchez, V. N., Rosato Siri, M. D., Cherksey, B. D., Sugimori, M., Llinas, R. and Uchitel, O. 1995. Pharmacological characterization of the voltage-dependent Ca2+ channels present in synaptosomes from rat and chicken central nervous system. J. Neurochem. 64:2544–2551.

    Google Scholar 

  30. Walker, J. M., Moises, H. C., Coy, D. H., Baldrighi, G. and Akil, H. 1982. Nonopiate effects of Dynorphin and Des-Tyr-Dynorphin. Science. 218:1136–1138.

    Google Scholar 

  31. Gross, R. A. and Macdonald, R. L. 1987. Dynorphin A selectively reduces a large transient (N-type) calcium current of mouse dorsal root ganglion neurons in cell culture. Proc. Natl. Acad. Sci. U.S.A. 84:5469–5473.

    Google Scholar 

  32. Stevens, C. W., Weinger, M. B. and Yaksh, T. L. 1987. Intrathecal dynorphins suppress hindlimb electromyographic activity. Eur. J. Pharmacol. 138:299–302.

    Google Scholar 

  33. Ichida, S., Wada, T., Nakazaki, S., Matsuda, N., Kishino, H. and Akimoto, T. 1993. Specific binding of [3H](+)PN200-110 and 125|-ω-conotoxin GVIA to crude membranes from differentiated NG108-15 cell. Neurochem Res. 18:633–638.

    Google Scholar 

  34. Catterall, W. A. 1980. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu. Rev. Pharmacol. Toxicol. 20:15–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu-an, Z., Imanishi, T., Wada, T. et al. Proportions of Ca2+ Channel Subtypes in Chick or Rat P2 Fraction and NG108-15 Cells Using Various Ca2+ Blockers. Neurochem Res 24, 1059–1066 (1999). https://doi.org/10.1023/A:1021065028647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021065028647

Navigation