Skip to main content
Log in

Properties of Block Copolymers of Poly(Butylene Terephthalate) and Polyoxytetramethylene Glycol

  • Published:
Fibre Chemistry Aims and scope

Abstract

Synthesis of polyester thermoelastoplasts, block copolymers of polyoxytetramethylene glycol and poly(butylene terephthalate) of the polyblock type, was developed and implemented in pilot industrial conditions. POTM blocks act as flexible molecular decouplings that give the copolymer elasticity, while PBT blocks form physical linkages and are responsible for the mechanical strength and hardness of the material. The composition of the reaction systems, process stage sequence, and synthesis parameters are optimized for block copolymers with a concentration of the flexible POTM block of 65-10 wt. % and a molecular weight of 1000. The structure is investigated, and the physicochemical and mechanical properties of the material obtained are determined. It was found that the concentration of flexible blocks has a determining effect on the physicochemical structure and properties of the block copolymers. For a ∼40% concentration of the flexible block, the character of the concentration curves of the physicomechanical indexes changes significantly due to phase-structural transformations in the block copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. R. Legge, G. Holden, and H. E. Schroeder (eds.), Thermoplastic Elastomers, Hanser Publishers, Vienna-New York (1997).

    Google Scholar 

  2. P. M. Valetskii and I. P. Storozhuk, Usp. Khim., 48,No. 1, 75–114 (199).

    Google Scholar 

  3. F. G. Gallagher, C. J. Hamilton, and R. F. Tietz, US Patent No. 5,097,004 (1992).

  4. F. G. Gallagher, C. J. Hamilton, et al., WO 93/07197 (1993).

  5. S. J. McCarthy, G. F. Meiys, and P. Gunatillake, J. Appl. Polym. Sci., 65,No. 7, 1319–1332 (1997).

    Google Scholar 

  6. O. Sangen, H. Yamasaki, et al., Kobunshi Ronbunshu, 52,No. 7, 402–409 (1995).

    Google Scholar 

  7. Shi Yh and Mu My, Polym. Int., 38,No. 4, 357–362 (1995).

    Google Scholar 

  8. C. M. Boussias, R. H. Peters, and R. H. Still, J. Appl. Polym. Sci., 25, 855–867 (1980).

    Google Scholar 

  9. J. C. Stevenson and S. L. Cooper, J. Polym. Sci., 26, Part B, 953 (1988).

    Google Scholar 

  10. M. I. Siling and T. I. Laricheva, Usp. Khim., 65,No. 3, 296–303 (1996).

    Google Scholar 

  11. S. S. Pesetskii, B. Jurkowski, et al., Eur. Polym. J., 37, 2187–2199 (2001).

    Google Scholar 

  12. I. N. Zhmykhov, Yu. M. Mozheiko, et al., RB Patent Application No. A-19990008 (1.5.1999).

  13. S. S. Pesetskii, I. P. Storozhuk, et al., in: Proceedings of the International Scientific and Technical Conference “Polymer Composites-98” [in Russian], Gomel' (September 29–30, 1998), pp. 113–115.

  14. G. K. Hoeschele, Angew. Makromol. Chem., 58/59, 299 (1977).

    Google Scholar 

  15. G. M. Bartenev, Structure and Relaxation Properties of Elastomers [in Russian], Khimiya, Moscow (1999).

    Google Scholar 

  16. B. M. Kovarskaya, A. B. Blyumenfel'd, and I. N. Levantovskaya, Thermal Stability of Heterochain Polymers [in Russian], Khimiya, Moscow (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mozheiko, Y.M. Properties of Block Copolymers of Poly(Butylene Terephthalate) and Polyoxytetramethylene Glycol. Fibre Chemistry 34, 254–259 (2002). https://doi.org/10.1023/A:1021040914415

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021040914415

Keywords

Navigation