Skip to main content
Log in

N-Acetyl Aspartic Acid (NAA) and N-Acetyl Aspartylglutamic Acid (NAAG) in Human Ventricular, Subarachnoid, and Lumbar Cerebrospinal Fluid

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

N-Acetylaspartic and N-acetylaspartylglutamic acid concentrations in human ventricular, subarachnoid and lumbar cerebrospinal fluid were measured by combined gas chromatography-mass spectrometry using selected ion monitoring with deuterated internal standards. N-Acetylaspartate concentrations were in the range 55, 9, and 1 μM, respectively; N-acetylaspartylglutamate concentrations in the same fluids were in the range 8, 3 and 4 μM, respectively. There did not appear to be any difference in lumbar fluid concentrations of either compound between control subjects, schizophrenic patients, Alzheimer's disease patients and a pooled group of patients with neurological degeneration. Ventricular concentrations of both compounds were greatly increased in deceased patients suggesting that maintenance of their intracellular concentrations is probably energy dependent. The concentrations of these compounds in lumbar cerebrospinal fluid from living, and ventricular cerebrospinal fluid from deceased subjects were weakly correlated with one another. In lumbar fluid neither compound appeared to be correlated with age. Analysis of serially collected lumbar samples from two subjects showed a weak concentration gradient for both compounds. Neither antipsychotic medication nor the acid transport inhibitor probenecid had any effect on lumbar concentrations of either compound. Attempts to use anion exchange high pressure liquid chromatography with UV detection for measurement of the low concentrations of N-acetylaspartate found in cerebrospinal fluid from living subjects were unsuccessful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tallan, H. H. 1957. Studies on the distribution of N-acetyl-L-aspartate acid in brain. J. Biol. Chem., 224:41–45.

    Google Scholar 

  2. Birken, D. L., and Olderndorf, W. H. 1989. N-Acetyl-L-aspartic acid: A literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci. Biobehav. Rev., 13:23–31.

    Google Scholar 

  3. Tsai, G., and Coyle, J. T. 1995. N-Acetylaspartate in neuropsychiatric disorders. Prog. Neurobiol., 46:531–540.

    Google Scholar 

  4. Clark, J. B. 1998. N-Acetylaspartate: A marker for neuronal loss or mitochondrial dysfunction. Dev. Neurosci., 20:271–276.

    Google Scholar 

  5. Koller, K. J., and Coyle, J. T. 1984. Ontogenesis of N-acetyl-aspartate and N-acetyl-aspartyl-glutamate in rat brain. Dev. Brain Res., 15:137–140.

    Google Scholar 

  6. Koller, K. J., Zaczek, R., and Coyle, J. T. 1984. N-Acetyl-aspartyl-glutamate; Regional levels in rat brain and the effects of brain lesions as determined by a new HPLC method. J. Neurochem., 43:1136–1142.

    Google Scholar 

  7. Kwo-On-Yuen, P. F., Newmark, R. D., Budinger, T. F., Kaye, J. A., Ball, M. J., and Jagust, W. J. 1994. Brain N-acetyl-L-apartic acid in Alzheimer's disease: a proton magnetic resonance spectroscopy study. Brain Research, 667:167–174.

    Google Scholar 

  8. Pfefferbaum, A., Faull, K. F., Pascoe, N., Rafie, R., and Jagust, W. N-Acetyl proton MRS signal and HPLC NAA concentrations in the same samples of human brain extracts. Submitted.

  9. Ory-Lavollee, L., Blakely, R. D., and Coyle, J. T. 1987. Neurochemical and immunocytochemical studies on the distribution of N-acetyl-aspartylglutamate and N-acetyl-aspartate in rat spinal cord and some peripheral nervous tissues. J. Neurochem., 48:895–899.

    Google Scholar 

  10. Simmons, M. L., Frondoza, C. G., and Coyle, J. T. 1991. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience, 45:37–45.

    Google Scholar 

  11. Kvittingen, E. A., Guldal, G., Borsting, S., Skalpe, I. O., Stokke, O., and Jellum, E. 1986. N-Acetylaspartic aciduria in a child with a progressive cerebral atrophy. Clin. Chim. Acta., 158:217–227.

    Google Scholar 

  12. Hagenfeldt, L., Bollgren, I., and Venizelos, N. 1987. N-Acetylaspartic aciduria due to aspartoacylase deficiency-a new etiology of childhood leukodystrophy. J. Inher. Metab. Dis., 10:135–141.

    Google Scholar 

  13. Divry, P., Vianey-Liaud, C., Gay, C., Macabeo, V., Rapin, F., and Echenne, B. 1988. N-Acetylaspartic aciduria: report of three new cases in children with a neurological syndrome associating macrocephaly and leukodystrophy. J. Inher. Metab. Dis., 11:307–308.

    Google Scholar 

  14. Matalon, R., Michals, K., Sebesta, D., Deanching, M., Gaschkoff, P., and Casanova, J. 1988. Aspartocyclase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am. J. Med. Genet., 29:463–471.

    Google Scholar 

  15. D'Adamo, Jr., A. F., and Yatsu, F. M. 1966. Acetate metabolism in the nervous system. N-Acetyl-L-aspartic acid and the biosynthesis of brain lipids. J. Neurochem., 13:961–965.

    Google Scholar 

  16. D'Adamo, Jr., A. F., Gidez, L. I., and Yatsu, F. M. 1968. Acetyl transport mechanisms. Involvement of N-acetyl aspartic acid in de novo fatty acid biosynthesis in the developing rat brain. Exptl. Brain Res., 5:267–273.

    Google Scholar 

  17. Burri, R., Steffen, C., and Herschkowitz, N. 1991. N-Acetyl-L-aspartate is a major source of acetyl groups for lipid synthesis during rat brain development. Dev. Neurosci., 13:403–411.

    Google Scholar 

  18. Shigematsu, H., Okamura, N., Shimeno, H., Kishimoto, Y., Kan, L-s., and Fenselau, C. 1983. Purification and characterization of the heat-stable factors essential for the conversion of lignoceric acid to cerebronic acid and glutamic acid: Identification of N-acetyl-L-aspartic acid. J. Neurochem., 40:814–820.

    Google Scholar 

  19. Margolis, R. U., Barkulis, S. S., and Geiger, A. 1960. A comparison between the incorporation of 14C from glucose into N-acetyl-L-aspartic acid and aspartic acid in brain perfusion experiments. J. Neurochem., 5:379–382.

    Google Scholar 

  20. McIntosh, J. C., and Cooper, J. R. 1965. Studies on the function of N-acetyl aspartic acid in brain. J. Neurochem., 12:825–835.

    Google Scholar 

  21. Truckenmiller, M. E., Namboodiri, M. A. A., Brownstein, M. J., and Neale, J. H. 1985. N-Acetylation of L-aspartate in the nervous system: Differential distribution of a specific enzyme. J. Neurochem., 45:1658–1662.

    Google Scholar 

  22. Taylor, D. L., Davies, S. E. C., Obrenovitch, T. P., Doheny, M. H., Patsalos, P. N., Clark, J. B., and Symon, L. 1995. Investigation into the role of N-acetylaspartate in cerebral osmoregulation. J. Neurochem., 65:275–281.

    Google Scholar 

  23. McIlwain, H. 1959. Biochemistry and the central nervous system, Churchill, London.

    Google Scholar 

  24. Jacobson, K. B. 1959. Studies on the role of N-acetylaspartic acid in mammalian brain. J. Gen. Physiol., 43:323–333.

    Google Scholar 

  25. Curtis, D. R., and Watkins, J. C. 1960. The excitation and depression of spinal neurones by structurally related amino acids. J. Neurochem., 6:117–141.

    Google Scholar 

  26. Rubin, Y., LaPlaca, M. C., Smith, D. H., Thibault, L. E., and Lenkinski, R. E. 1995. The effect of N-acetylaspartate on the intracellular free calcium concentration in NTera2-neurons. Neuroscience Letters, 198:209–212.

    Google Scholar 

  27. Curatolo, A., D'Arcangelo, P., Lino, A., and Brancati, A. 1965. Distribution of N-acetyl-aspartic and N-acetyl-aspartyl-glutamic acids in nervous tissue. J. Neurochem., 12:339–342.

    Google Scholar 

  28. Miyamoto, E., Kakimoto, Y., and Sano, I. 1966. Identification of N-acetyl-α-aspartylglutamic acid in the bovine brain. J. Neurochem., 13:999–1003.

    Google Scholar 

  29. Blakely, R. D., and Coyle, J. T. 1988. The neurobiology of N-acetylaspartylglutamate. Int. Rev. Neurobiol., 30:39–100.

    Google Scholar 

  30. Coyle, J. T. 1997. The nagging question of the function on N-acetylaspartylglutamate. Neurobiology of Disease, 4:231–238.

    Google Scholar 

  31. Miyake, M., Kakimoto, Y., and Sorimachi, M. 1981. A gas chromatographic method for the determination of N-acetyl-L-aspartic acid, N-acetyl-α-aspartylglutamic acid and β-citryl-L-glutamic acid and their distributions in the brain and other organs of various species of animals. J. Neurochem., 36:804–810.

    Google Scholar 

  32. Tsai, G., Goff, D. C., Chang, R. W., Flood J., Baer, L., and Coyle, J. T. 1998. Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. American Journal of Psychiatry, 155:1207–1213.

    Google Scholar 

  33. Cangro, C. B., Namboodiri, M. A. A., Sklar, L. A., Corigliano-Murphy, A., and Neale, J. H. 1987. Immunohistochemistry and biosynthesis and of N-acetylaspartylglutamate in spinal sensory ganglia. J. Neurochem., 49:1579–1588.

    Google Scholar 

  34. Reichelt, K. L., and Kvamme, E. 1973. Histamine-dependent formation of N-acetyl-aspartyl peptides in mouse brain. J. Neurochem., 21:849–859.

    Google Scholar 

  35. Sinichkin, A., Sterri, S., Edminson, P. D., Reichelt, K. L., and Kvamme, E. 1977. In vivo labelling of acetyl-aspartyl peptides in mouse brain from intracranially and intraperitoneally administered acetyl-L-[U-14C]aspartate. J. Neurochem., 29:425–431.

    Google Scholar 

  36. Lin, S-n, Slopis, J. M., Butler, I. J., and Caprioil, R. M. 1995. In vivo microdialysis and gas chromatography/mass spectrometry for studies on release of N-acetylaspartylglutamate and N-acetylaspartate in rat brain hypothalamus. J. Neuroscience Methods, 62:199–205.

    Google Scholar 

  37. Wroblewska, B., Wroblewski, J. T., Pshenichkin, S., Surin, A., Sullivan, S. E., and Neale, J. H. 1997. N-Acetyaspartylglutamate selectively activates mGluR3 receptors in transfected cells. J. Neurochemistry, 69:174–181.

    Google Scholar 

  38. Santi, M. R., Wroblewska, B., and Neale, J. H. 1995. NAAG acts through metabotropic glutamate receptors in cultured glial cells. Society. Neuroscience Abstr., 21:847.

    Google Scholar 

  39. Ghose, S., Wroblewska, B., Corsi, L., Grayson, D. R., De Blas, A. L., Vicini, S., and Neale, J. H. 1997. N-Acetylasparylglutamate stimulates metabotropic glutamate receptor 3 to regulate expression of the GABAA α6 subunit in cerebellar granule cells. J. Neurochemistry, 69:2326–2335.

    Google Scholar 

  40. Zollinger, M., Amsler, U., Do, K. Q., Streit, P., and Cuenod, M. 1988. Release of N-acetylaspartylglutamate on depolarization of rat brain slices. J. Neurochem., 51:1919–1923.

    Google Scholar 

  41. Tsai, G., Stauch, B. L., Vornov, J. J., Deshpande, J. K., and Coyle, J. T. (1990) Selective release of N-acetylaspartylglutamate from rat optic nerve terminals in vivo. Brain Res., 518:313–316.

    Google Scholar 

  42. Williamson, L. C., and Neale, J. H. 1988. Ultrastructural localization of N-acetylaspartylglutamate in synaptic vesicles of retinal neurons. Brain Res., 456:375–381.

    Google Scholar 

  43. Korf, J., Veenma-van der Duin, L., Venema, K., and Wolf, J. H. (1991) Automated precolumn fluorescence labelling bycarbodiimide activation of N-acetylaspartate and N-acetylaspartylglutamate applied to an HPLC brain tissue analysis. Anal. Biochem., 196:350–355.

    Google Scholar 

  44. Miyake, M., and Kakimoto, Y. 1981 Developmental changes of N-acetyl-L-aspartic acid, N-acetyl-α-aspartylglutamic acid and β-citryl-L-glutamic acid in different brain regions and spinal cords of rat and guinea pig. J. Neurochem., 37:1064–1067.

    Google Scholar 

  45. Swahn, C-G. 1990. Determination of N-Acetylaspartic acid in human cerebrospinal fluid by gas chromatography-mass spectometry. J Neurochem., 54:1584–1588.

    Google Scholar 

  46. Jakobs, C., ten Brink, H. J., Langelaar, S. A., Zee, T., Stellaard, F., Macek, M., Srsnova, K., Srsen, S., and Kleijer, W. J. 1991. Stable isotope dilution analysis of N-acetylaspartic acid in CSF, blood, urine and amniotic fluid: Accurate postnatal diagnosis and the potential for prenatal diagnosis of Canavan disease. J. Inher. Metab. Dis., 14:653–660.

    Google Scholar 

  47. Kelley, R. I., and Stamas, J. N. 1992. Quantification of N-acetyl-L-aspartic acid in urine by isotope dilution gas chromatography-mass spectrometry. J. Inher. Metab. Dis., 15:97–104.

    Google Scholar 

  48. Rothstein, J. D., Tsai, G., Kuncl, R. W. Clawson, L., Cornblath, D. R., Drachman, D. B., Pestronk, A., Stauch, B. L., and Coyle, J. T. 1990. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol., 28:18–25.

    Google Scholar 

  49. Tsai, G., Passani, L. A., Slusher, B. S., Carter, R., Baer, L., Kleinman, J. E., and Coyle, J. T. 1995. Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Archives of General Psychiatry, 52:829–836.

    Google Scholar 

  50. Tsai, G. E., Ragan, P., Chang, R., Chen, S., Linnoila, U. M., and Coyle, J. T 1998. Increased Glutamatergic Neurotransmission and Oxidative Stress After Alcohol Withdrawal. American Journal of Psychiatry, 155:726–732.

    Google Scholar 

  51. Spink, D. C., and Martin, D. L. 1991. Excitatory amino acids in amyotrophic lateral sclerosis. Ann. Neurol., 29:110.

    Google Scholar 

  52. Rothstein, J. D., Kuncl, R., Chaudhry, V., Clawson, L., Cornblath, D. R., Coyle, J. T., and Drachman, D. B. 1991. Excitatory amino acids in amyotrophic lateral sclerosis: an update. Ann. Neurol., 30:224–225.

    Google Scholar 

  53. Csernansky, J. G., Newcomer, J. W., Jackson, K., Lombrozo, L., Faull, K. F., Zipursky, R., Pfefferbaum, A., and Faustman, W. O. 1994. Effects of raclopride treatment on plasma and CSF HVA: relationships with clinical improvement in male schizophrenics. Psychopharmacology, 116:291–296.

    Google Scholar 

  54. Spitzer, R. L., Williams, J. B. W., Gibbon, M., and First, M. B. 1989. Structured clinical interview for DSM-III-R—patient version. Biometrics Research Department, New York State Psychiatric Institute, New York.

    Google Scholar 

  55. Americal Psychiatric Association. 1987. Washington, DC., DMS-III-R

  56. McKhann, G, Drachman, D, Folstein, M., Katzman, R., Price, D., and stadlan, E. M. 1984. Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology, 34:939–944.

    Google Scholar 

  57. Khachaturian, Z. S. 1985. Diagnosis of Alzheimer's disease. Arch. Neurol., 42:1097–1105.

    Google Scholar 

  58. Jibson, M., Faull, K. F., and Csernansky, J. G. 1990. Intercorrelations among monoamine metabolite concentrations in human lumbar CSF are not due to a shared acid transport system. Biological Psychiatry, 28:595–602.

    Google Scholar 

  59. Faull, K. F. DoAmaral, J. R., and Barchas, J. D. 1978. A selected ion monitoring assay for probenecid. Biomed Mass Spectrometry, 5:317–320.

    Google Scholar 

  60. Faull, K. F., Anderson, P. J., Barchas, J. D., and Berger, P. A. 1979. Selected ion monitoring assay for biogenic amine metabolites and probenecid in human lumbar cerebrospinal fluid. J Chromatogr Biomed Appl., 163:337–349.

    Google Scholar 

  61. Sager, T. N., Laursen, H., and hansen, A. J. 1995. Changes in N-acetyl-aspartate content during focal and global ischemia of the rat. J. Cerebral Blood Flow and Metabolism, 15:639–646.d

    Google Scholar 

  62. Harnryd, C., Bjerkenstedt, L., Gullberg, B., Oxenstierna, G., Sedvall, G., and Wiesel, F-A. 1984. Time course for effects of sulpiride and chlorpromazine on monoamine metabolite and prolactin levels in cerebrospinal fluid from schizophrenic patients. Acta Psych. Scand. Suppl. 311:75–92.

    Google Scholar 

  63. Forn, J. 1972. Active transport of 5-hydroxyindoleacetic acid by the rabbitt choroid plexus in vitro: Blockage by probenecid and metabolic inhibitors. Biochem. Pharmacol., 21:619–624.

    Google Scholar 

  64. Faull, K. F., Barchas, J. D., Foutz, A. S., Dement, W. C., and Holman, R. B. 1982. Monoamine metabolite concentrations in the cerebrospinal fluid of normal and narcoleptic dogs. Brain Res., 242:137–143.

    Google Scholar 

  65. Faull, K. F., Kraemer, H. C., Barchas, J. D., and Berger, P. A. 1981. Clinical application of the probenecid test for measurement of monoamine turnover in the CNS. Biol Psychiatr, 16:879–899. Published correction: Faull, K. F., Kraemer, H. C., Barchas, J. D., and Berger, P. A. 1988. Correction: Probenecid monoamine test. Biol. Psychiatr., 24:960.

    Google Scholar 

  66. Berger, P. A., Faull, K. F., Kilkowski, J., Anderson, P. J., Kraemer, H., Davis, K. L., and Barchas, J. D. 1980 CSF monoamine metabolites in depression and schizophrenia. Am J Psychiatry 137:174–180. Published correction: Faull, K. F., Berger, P. A., Kilkowski, J., Anderson, P. J., Kraemer, H., Davis, K. L., and Barchas, J. D. 1989. Corrections to a 1980 article on CSF monomine metabolites. Am. J. Psychiatriatry, 146:118.

    Google Scholar 

  67. Gonzalez-Mora, J. L., Maidment, N. T., Guadalupe, T., and Mas, M. 1989. Post-mortem dopamine dynamics assessed by voltammetry and microdialysis. Brain Research Bulletin, 23:323–327.

    Google Scholar 

  68. Maidment, N. T., Siddall, B., Rudolph, V. D., and Evans, C. J. 1991. Postmortem changes in rat brain extracellular opioid peptides revealed by microdialysis. Journal of Neurochemistry, 56:1980–1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kym F. Faull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faull, K.F., Rafie, R., Pascoe, N. et al. N-Acetyl Aspartic Acid (NAA) and N-Acetyl Aspartylglutamic Acid (NAAG) in Human Ventricular, Subarachnoid, and Lumbar Cerebrospinal Fluid. Neurochem Res 24, 1249–1261 (1999). https://doi.org/10.1023/A:1020973023059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020973023059

Navigation