Skip to main content
Log in

Genetic load caused by variation in the amount of rDNA in a wasp

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Extensive variation in the size of the short (heterochromatic) arm of chromosome 14 was found in the wasp Trypoxylon (Trypargilum) albitarse. Ten different variants were differentiated by size and C-banding pattern. Fluorescent in-situ hybridization (FISH) revealed that ribosomal DNA in this species is clustered in the darkly C-banded parts of the heterochromatic short arm of chromosome 14. On this basis, we got an indirect estimate of the amount of rDNA from the area of these dark C-bands. The significant absence in males of the three chromosome variants with lower amounts of rDNA indicates that these three variants are lethal in this sex, and suggests the existence of a threshold marking the minimum amount of rDNA which is tolerable in haploidy. This implies about 4% genetic load in the population caused by variation in rDNA amount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araujo SMSR, Pompolo SG, Dergam JAS, Campos LAO (2000) The B chromosome system of Trypoxylon (Trypargilum) albitarse (Hymenoptera, Sphecidae) I. Banding analysis. Cytobios 101: 7-13.

    PubMed  CAS  Google Scholar 

  • Araújo SMSR, Pompolo SG, Perfectti F, Camacho JPM (2001) Integration of a B chromosomes into the A genome of a wasp. Proc R Soc Lond B 268: 1127-1131.

    Article  Google Scholar 

  • Bickham JW, Rogers DS (1985) Structure and variation of the nucleolus organizer regions in turtles. Genetica 67: 171-184.

    Article  Google Scholar 

  • Bohart RM, Menke AS (1976) Sphecidae Wasps of the World: A Generic Revision. Berkeley: University California Press.

    Google Scholar 

  • Butler DK, Metzenberg RL (1990) Expansion and contraction of the nucleolus organizer region of Neurospora: changes originate in both proximal and distal segments. Genetics 126: 325-333.

    PubMed  CAS  Google Scholar 

  • Castro J, Rodríguez S, Arias J, Sánchez L, Martínez P (1994) A population analysis of Robertsonian and Ag-NOR polymorphism in brown trout (Salmo trutta). Theor Appl Genet 89: 105-111.

    Article  Google Scholar 

  • Castro J, Sánchez L, Martínez P (1998) Analysis of the inheritance of NOR size variants in brown trout (Salmo trutta). J Hered 89: 264-266.

    Article  Google Scholar 

  • Castro J, Rodríguez S, Pardo BG, Sánchez L, Martínez P (2001) Population analysis of an unusual NOR-site polymorphism in brown trout (Salmo trutta L.) Heredity 86: 291-302.

    Article  PubMed  CAS  Google Scholar 

  • Chindamporn A, Iwaguchi S, Nakagawa Y, Homma M, Tanaka K (1993) Clonal size-variation of rDNA cluster region on chromosome XII of Sacharomyces cerevisiae. J Gen Microbiol 139: 1409-1415.

    PubMed  CAS  Google Scholar 

  • Ferro DAM, Néo DM, Moreira-Filho O, Bertollo LAC (2001) Nucleolar organizing regions, 18S and 5S rDNA in Astyanax scabripinnis (Pisces, Characidae): populations distribution and functional diversity. Genetica 110: 55-62.

    Article  Google Scholar 

  • Gatti M, Pimpinelli S (1992) Functional elements in Drosophila melanogaster heterochromatin. Annu Rev Genet 26: 239-275.

    Article  PubMed  CAS  Google Scholar 

  • Hsu TC, Sperito SE, Pardue ML (1975) Distribution of 18-28S ribosomal genes in mammalian genomes. Chromosoma 53: 25-36.

    Article  PubMed  CAS  Google Scholar 

  • Imai HT (1991) Mutability of constitutive heterochromatin (C-bands) during eukaryotic chromosomal evolution and their cytological meaning. Jpn J Genet 66: 635-661.

    Article  PubMed  CAS  Google Scholar 

  • Imai HT, Taylor RW, Crosland MWJ, Crozier RH (1988) Modes of spontaneous chromosome mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Jpn J Genet 63: 113-125.

    Google Scholar 

  • Karpen GH, Schaefer JE, Laird CD (1988) A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. Genes Dev 2: 1745-1763.

    PubMed  CAS  Google Scholar 

  • King M, Contreras N, Honeycutt RL (1990) Variation within and between nucleolar organizer regions in Australian hylid frogs (Anura) shown by 18S+28S in situ hybridisation. Genetica 80: 17-29.

    Article  PubMed  CAS  Google Scholar 

  • Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49: 727-764.

    Article  PubMed  CAS  Google Scholar 

  • López-León MD, Cabrero J, Camacho JPM (1999) Unusually high amount of inactive ribosomal DNA in the grasshopper Stauroderus scalaris. Chromosome Res 7: 83-88.

    Article  PubMed  Google Scholar 

  • Lyckegaard EMS, Clark AG (1991) Evolution of ribosomal RNA gene copy number on the sex chromosomes of Drosophila melanogaster. Mol Biol Evol 8: 458-474.

    PubMed  CAS  Google Scholar 

  • Macgregor HC, Vlad M, Barnett L (1977) An investigation of some problems concerning nucleolus organizers in salamanders. Chromosoma 59: 283-299.

    Article  CAS  Google Scholar 

  • Martínez P, Viñas A, Bouza C, Castro J, Sánchez L (1993) Quantitative analysis of the variability of nucleolar organizer regions in Salmo trutta. Genome 36: 1119-1123.

    PubMed  Google Scholar 

  • Miller OJ (1981) Nucleolar organisers in mammalian cells. Chromosomes Today 7: 64-73.

    CAS  Google Scholar 

  • Miller L, Brown DD (1969) Variation in the activity of nucleolar organizer and their ribosomal gene content. Chromosoma 28: 430-444.

    Article  PubMed  CAS  Google Scholar 

  • Miller L, Gurdon JB (1970) Mutations affecting the size of the nucleolus in Xenopus laevis. Nature 227: 1108-1110.

    Article  PubMed  CAS  Google Scholar 

  • Moreira-Filho O, Bertollo LAC, Galetti PM (1984) Structure and variability of nucleolar organizer regions in Parodontidae fish. Can J Genet Cytol. 26: 564-568.

    Google Scholar 

  • Phillips RB, Pleyte KA, Hartley SE (1988) Stock-specific differences in the number of chromosome positions of the nucleolar organizer regions in artic char (Salvelinus alpinus). Cytogenet Cell Genet 48: 9-12.

    Google Scholar 

  • Pompolo SG, Takahashi CS (1990) Chromosome number and C-banding in two wasp species of the genus Polistes (Hymenopera, Polistinae, Polistini). Insec Sociaux 37: 251-257.

    Article  Google Scholar 

  • Roiha H, Miller JR, Woods LE, Glover DM (1981) Arrangements and rearrangements of sequences flanking the two types of rDNA insertion in D. melanogaster. Nature 290: 749-753.

    Article  PubMed  CAS  Google Scholar 

  • Russell PJ, Roland KD (1986) Magnification of rDNA gene number in a Neurospora crassa strain with partial deletion of the nucleolus organizer. Chromosoma 93: 333-340.

    Article  Google Scholar 

  • Sánchez L, Martínez P, Viñas A, Bouza C (1990) Analysis of the structure and variability of nucleolar organizer regions of Salmo trutta by C-, Ag-, and restriction endonuclease banding. Cytogenet Cell Genet 54: 6-9.

    Article  PubMed  Google Scholar 

  • Schmid M (1982) Chromosome banding in Amphibia. VII. Analysis of the structure and variability of NORs in Anura. Chromosoma 87: 327-344.

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.

    Google Scholar 

  • Schubert I, Wobus U (1985) In situ hybridisation confirms jumping nucleolus organizing region in Allium. Chromosoma 92: 143-148.

    Google Scholar 

  • Strauss SH, Tsai CH (1988) Ribosomal gene number variability in Douglas-fir. J Hered 79: 453-458.

    Google Scholar 

  • Vaughan HE, Jamilena M, Ruiz Rejón C, Parker JS, Garrido-Ramos MA (1993) Loss of nucleolar-organizer regions during polyploid evolution in Scilla autumnalis. Heredity 71: 574-580.

    Google Scholar 

  • Viégas-Péquignot E (1992) In situ hybridization to chromosomes with biotinylated probes. In: Willernson D, Ed. In situ Hybridization: A Pratical Approach. Oxford University Press pp. 137-158.

  • Viñas A, Gómez C, Martínez P, Sánchez L (1996) Localization of rDNA genes in European eel (Anguilla anguilla). Genome 39: 1220-1223.

    PubMed  Google Scholar 

  • White MJD, Dennis ES, Honeycutt RL, Contreras N, Peacock WJ (1982) Cytogenetics of the parthenogenetic grasshopper Warramaba virgo and its bisexual relatives. IX. The ribosomal RNA cistrons. Chromosoma 85: 181-199.

    Article  CAS  Google Scholar 

  • Zhang Q, Saghai Maroof MA, Allard RW (1990) Effects on adaptedness of variations in ribosomal DNA copy number in populations of wild barley (Hordeum vulgare ssp. Spontaneum). Proc Natl Acad Sci USA 87: 8741-8745.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araújo, S.M.S.R., Silva, C.C., Pompolo, S.G. et al. Genetic load caused by variation in the amount of rDNA in a wasp. Chromosome Res 10, 607–613 (2002). https://doi.org/10.1023/A:1020970820513

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020970820513

Navigation