Skip to main content
Log in

Structure and function of glutamyl-tRNA reductase, the first enzyme of tetrapyrrole biosynthesis in plants and prokaryotes

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Glutamyl-tRNA reductase (GluTR) catalyzes the first step of tetrapyrrole biosynthesis in plants, archaea and most bacteria. The catalytic mechanism of the enzyme was elucidated both by biochemical data and the determination of the high-resolution crystal structure of the enzyme from the archaeon Methanopyrus kandleri in complex with a competitive inhibitor. The dimeric enzyme has an unusual V-shaped architecture where each monomer consists of three domains linked by a long `spinal' α-helix. The central catalytic domain specifically recognizes the glutamate moiety of the substrate. It bears a conserved cysteine poised to nucleophilically attack the activated aminoacyl bond of glutamyl-tRNA. Subsequently, the thioester intermediate is reduced to the product glutamate-1-semialdehyde via hydride transfer from NADPH supplied by the second domain. A structure-based sequence alignment indicates that catalytically essential amino acids are conserved throughout all GluTRs. Thus the catalytic mechanism derived for M. kandleri is common to all including plant GluTRs. Mutations described to influence the catalytic efficiency of the barley enzyme can therefore be explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avissar YJ, Ormerod JG and Beale SI (1989) Distribution of delta-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch Microbiol 151: 513–519

    Article  PubMed  CAS  Google Scholar 

  • Beale SI and Castelfranco PA (1973) C incorporation from exogenous compounds into ?-aminolevulinic acid by greening cucumber cotyledons. Biochem Biophys Res Commun 52: 143–149

    Article  PubMed  CAS  Google Scholar 

  • Carugo O and Argos P (1997) NADP-dependent enzymes. I. Conserved stereochemistry of cofactor binding. Proteins Struct Genet 28: 10–28

    Article  CAS  Google Scholar 

  • Cavarelli J and Moras D (1993) Recognition of tRNAs by aminoacyl-tRNA synthetases. FASEB J 7: 79–86.

    PubMed  CAS  Google Scholar 

  • Chen MW, Jahn D, O'Neill GP and Söll D (1990) Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in delta-aminolevulinic acid formation during chlorophyll biosynthesis. J Biol Chem 265: 4058–4063

    PubMed  CAS  Google Scholar 

  • Contestabile R, Angelaccio S, Maytum R, Bossa F and John RA (2000) The contribution of a conformationally mobile, active site loop to the reaction catalyzed by glutamate semialdehyde aminomutase. J Biol Chem 275:, 3879–3886

    Article  PubMed  CAS  Google Scholar 

  • Eiler S, Dock-Bregeon A, Moulinier L, Thierry JC and Moras D (1999) Synthesis of aspartyl-tRNA(Asp) in Escherichia coli-a snapshot of the second step. EMBO J 18: 6532–6541

    Article  PubMed  CAS  Google Scholar 

  • Ferreira GC (1995) Heme biosynthesis: biochemistry, molecular biology, and relationship to disease. J Bioenerg Biomembr 27: 147–50

    Article  PubMed  CAS  Google Scholar 

  • Gouet P, Courcelle E, Stuart DI and Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15: 305–308

    Article  PubMed  CAS  Google Scholar 

  • Grimm B (1990) Primary structure of a key enzyme in plant tetrapyrrole synthesis: glutamate 1-semialdehyde aminotransferase. Proc Natl Acad Sci USA 87: 4169–4173

    Article  PubMed  CAS  Google Scholar 

  • Hennig M, Grimm B, Contestabile R, John RA and Jansonius JN (1997) Crystal structure of glutamate-1-semialdehyde aminomutase: an ?2-dimeric vitamin B6-dependent enzyme with asymmetry in structure and active site reactivity. Proc Natl Acad Sci USA 94: 4866–4871

    Article  PubMed  CAS  Google Scholar 

  • Ilag LL and Jahn D (1992) Activity and spectroscopic properties of the Escherichia coli glutamate 1-semialdehyde aminotransferase and the putative active site mutant K265R. Biochemistry 31: 7143–7151

    Article  PubMed  CAS  Google Scholar 

  • Jahn D, Chen MW and Söll D (1991) Purification and functional characterization of glutamate-1-semialdehyde aminotransferase from Chlamydomonas reinhardtii. J Biol Chem 266: 161–167

    PubMed  CAS  Google Scholar 

  • Jahn D, Verkamp E and Söll D (1992) Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 17: 215–218

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W and Sander C (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi G, Kumar A, Talmage P and Shemin D (1958) The enzymatic synthesis of ?-aminolevulinic acid. J Biol Chem 233: 1214–1219

    PubMed  CAS  Google Scholar 

  • Kraulis PJ (1991) MOLSCRIPT: a program to produce both detailed and schematic plots or protein structures. J Appl Crystallogr 24: 946–950

    Article  Google Scholar 

  • Mayer SM, Beale SI and Weinstein JD. (1987) Enzymatic conversion of glutamate to delta-aminolevulinic acid in soluble extracts of Euglena gracilis. J Biol Chem 262: 12541–12549

    PubMed  CAS  Google Scholar 

  • Merrit EA and Murphy MEP (1994) Raster3D version 2.0: a program for photorealistic molecular graphics. Acta Crystallogr D50: 869–873

    Google Scholar 

  • Moser J, Lorenz S, Hubschwerlen C, Rompf A and Jahn D (1999) Methanopyrus kandleri glutamyl-tRNA-reductase. J Biol Chem 274: 30679–30685

    Article  PubMed  CAS  Google Scholar 

  • Moser J, Schubert W-D, Beier V, Jahn D and Heinz DW (2001) V-shaped structure of glutamyl-tRNA-reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J 20: 6583–6590

    Article  PubMed  CAS  Google Scholar 

  • Neuberger A (1968) Biochemical basis and regulatory mechanisms of porphyrin synthesis. Proc R Soc Med 61: 191–193

    PubMed  CAS  Google Scholar 

  • Schön A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG and Söll D.(1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322: 281–284

    Article  PubMed  Google Scholar 

  • Sekine S, Nureki O, Shimada A, Vassylyev DG and Yokoyama S (2001) Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat Struct Biol 8: 189–191

    Article  Google Scholar 

  • Smith MA, Kannangara CG and Grimm B (1992) Glutamate 1-semialdehyde aminotransferase: anomalous enantiomeric reaction and enzyme mechanism. Biochemistry 31: 11249–11254

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG and Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680

    PubMed  CAS  Google Scholar 

  • Verkamp E, Jahn M, Jahn D, Kumar AM and Söll D (1992) Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression. J Biol Chem 267: 8275–8280

    PubMed  CAS  Google Scholar 

  • Vothknecht UC, Kannangara CG and von Wettstein D (1996) Expression of catalytically active barley glutamyl tRNAGlu reductase in Escherichia coli as a fusion protein with glutathione S-transferase. Proc Natl Acad Sci USA 93: 9287–9291

    Article  PubMed  CAS  Google Scholar 

  • Vothknecht UC, Kannangara CG and von Wettstein D (1998) Barley glutamyl tRNAGlu reductase: mutations affecting haem inhibition and enzyme activity. Phytochemistry 47: 513–519

    Article  PubMed  CAS  Google Scholar 

  • Willows RD, Kannangara CG and Pontoppidan B (1995) Nucleotides of tRNA (Glu) involved in recognition by barley chloroplast glutamyl-tRNA synthetase and glutamyl-tRNA-reductase. Biochim Biophys Acta 1263: 228–234

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Jahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, WD., Moser, J., Schauer, S. et al. Structure and function of glutamyl-tRNA reductase, the first enzyme of tetrapyrrole biosynthesis in plants and prokaryotes. Photosynthesis Research 74, 205–215 (2002). https://doi.org/10.1023/A:1020963711861

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020963711861

Navigation