Skip to main content
Log in

Study of the mechanism of additives on copper dissolution in monoethanolamine-complexed cupric ion solution

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The dissolution of copper in monoethanolamine (MEA)-complexed cupric ion solution containing different additives was studied. Bridging ligands, such as F, Cl, Br, I, SCN, and oxidizers, including S2O8 2−, Cr2O7 2−, MnO4 were added to this nonammoniacal etching solution to increase the copper dissolution rate. Potentiodynamic methods were employed to elucidate the dissolution mechanism and the corrosion potential (E corr) was found to shift from 10 to 90 mV as opposed to that of the original solution (0.045 M cupric sulfate and 0.225 M MEA) for bridging ligands. In contrast, some conventional oxidizers were also added in the etchant and the E corr did not shift obviously. Therefore, we proposed that copper dissolution proceeds through an ‘inner-sphere’ pathway in solution containing bridging ligands. The electron is transferred from the copper surface into the cupric species through the ligands, which greatly influences the copper dissolution rate. The order of effectiveness of these ligands is SCN > I > Br > Cl > F, which is related to their polarizability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kantek and J.G. Gordon, J. Electrochem. Soc. 137 (1990) 2672.

    Google Scholar 

  2. S. Dobg, Y. Xie and G. Cheng, Electrochem. Acta 37 (1992) 17.

    Google Scholar 

  3. D. Tromansand T. Ahmed, J. Electrochem. Soc. 145 (1998) 601.

    Google Scholar 

  4. C.A. Melendres, T.J. O'Leary and J. Solis, Electrochim. Acta 36 (1991) 505.

    Google Scholar 

  5. M. Drogowska, L. Brossard and H. Menard, J. Electrochem. Soc. 139 (1992) 2787.

    Google Scholar 

  6. R.H. Sun and D. Tromans, J. Electrochem. Soc. 138 (1991) 3235.

    Google Scholar 

  7. T. Aben and D. Tromans, J. Electrochem. Soc. 142 (1995) 398.

    Google Scholar 

  8. C.R. Shipley Jr, US Patent 3 650 958 (1972).

  9. L.H. Tseng, MS thesis, Tsing-Hua University (June, 1998).

  10. R.J. Flannery, B. Ke, M.W. Grieb and D. Trivich, J. Am. Chem. Soc. 77 (1955) 2996.

    Google Scholar 

  11. W.J. Schwerdtfeger and O.N. McDorman, J. Electrochem. Soc. 99 (1952) 407.

    Google Scholar 

  12. M. Georgiadou and R. Alkire, J. Electrochem. Soc. 140 (1993) 1340.

    Google Scholar 

  13. Q. Luo, R.A. Mackay and S.V. Babu, Chem. Mater. 9 (1997) 2101.

    Google Scholar 

  14. H. Taube, 'Electron Transfer Reactions of Complex Ions in Solution' (Academic Press, New York, 1970).

    Google Scholar 

  15. A.J. Bard, 'Electrochemical Methods: Fundamental and Applications', (John Wiley & Sons, New York, 2nd edn, 2000), p. 116.

    Google Scholar 

  16. M.J. Weaver and F.C. Adson, Inorg. Chem. 15 (1976) 1871.

    Google Scholar 

  17. S.W. Barr and M.J. Weaver, Inorg. Chem. 23 (1984) 1657.

    Google Scholar 

  18. L.W. Wei, M.S. Chao and C.S. Chung, J. Chin. Chem. Soc. 26 (1979) 145.

    Google Scholar 

  19. M. Stern and A.L. Geary, J. Electrochem. Soc. 104 (1957) 56.

    Google Scholar 

  20. X.Q. Wang and Y.F. Zhang, Key Eng. Mater. 20 (1987) 2799.

    Google Scholar 

  21. C.F. Coombs Jr, 'Printed Circuits Handbook' (McGraw-Hill, New York, 1988), chapter 14.

    Google Scholar 

  22. H.W. Richardson, US Patent 5 431 776 (1995).

  23. P.H. Margulies, US Patent 2 987 301 (1961).

  24. D.J. Sykes, US Patent 4 311 551 (1982).

  25. A. Matsumoto, US Patent 3 936 332 (1976).

  26. M.L. Elias, US Patent 4 174 253 (1979).

  27. A.L.B. Marques, J. Zhang, A.B.P. Lever and W.J. Pietro, J. Electroanal. Chem. 392 (1995) 43.

    Google Scholar 

  28. A. Ignaczak, J.A.N.F. Gomesand S. Romanowski, J. Electroanal. Chem., 450 (1998) 175.

    Google Scholar 

  29. V. Climent, A. Rodes, J.M. Orts, A. Aldaz and J.M. Feliu, J. Electroanal. Chem. 461 (1999) 65.

    Google Scholar 

  30. D.P. Schweinsberg, S.E. Bottle and V. Otieno-Alego, J. Appl. Electrochem. 27 (1997) 161.

    Google Scholar 

  31. Y.C. Wu, P. Zhang, H.W. Pickering and D.L. Allara, J. Electrochem. Soc. 140 (1993) 2791.

    Google Scholar 

  32. K. Nakai, H. Nishihara and K. Aramaki, Corrosion 53 (1997) 679.

    Google Scholar 

  33. J.M. Orts, R. Gomez and J.M. Feliu, J. Electroanal. Chem. 467 (1999) 11.

    Google Scholar 

  34. J. Halpern, J. Electrochem. Soc. 100 (1953) 421.

    Google Scholar 

  35. G.K. Gomma, Mater. Chem. Phys. 56 (1998) 27.

    Google Scholar 

  36. C.H. Yang, Y.Y. Wang and C.C. Wan, J. Electrochem. Soc. 143 (1996) 3521.

    Google Scholar 

  37. C.H. Yang, Y.Y. Wang and C.C. Wan, J. Electrochem. Soc. 146 (1999) 4473.

    Google Scholar 

  38. W.B. Jensen, 'The Lewis Acid-Base Concepts; An Overview' (John Wiley & Sons, New York, 1980), p. 260.

    Google Scholar 

  39. R.R. Nazmutdinov, G.A. Tsirlina, O.A. Petrii, Y.I. Kharkats and A.M. Kuznetsov, Electrochim. Acta 45 (2000) 3521.

    Google Scholar 

  40. A.B. Zaki, M.Y. El-Sheikh, J. Evansand S.A. El-Safty, Polyhedron 19 (2000) 1317.

    Google Scholar 

  41. A. Haim, Acc. Chem. Res. 8 (1975) 264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-C. Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, CW., Wang, YY. & Wan, CC. Study of the mechanism of additives on copper dissolution in monoethanolamine-complexed cupric ion solution. Journal of Applied Electrochemistry 32, 987–992 (2002). https://doi.org/10.1023/A:1020939319057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020939319057

Navigation