Skip to main content
Log in

The μCF Experiments at PSI – A Conclusive Review

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

During 25 years pioneering μCF experiments were performed at PSI. After initial study of the Wolfenstein–Gershtein effect in H/D, an intense research program on dμd fusion led to the early discovery of resonant dμd formation at low temperature and to the first direct observation of μd spin flip. With the Gatchina ionisation chamber absolute precisions of ∼1% on the determination of dμd formation and spin flip rates were recently obtained in good agreement with the theory.

In a very large effort the highly resonant dμt fusion cycle was investigated. Record cycle rates up to 2×108 s−1 and yields up to 124 fusions per muon were measured. By slope analysis and by direct observation, effective sticking ω s = (0.505 ± 0.029)% is the final PSI result. Clear experimental evidence of large epithermal resonances in D/T and H/D/T mixtures was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertl, W. et al., SIN proposal R-93-04.1 (1975), unpublished.

  2. Gershtein, S. S., Sov. Phys. JETP 13 (1961), 488.

    Google Scholar 

  3. Bertl, W. et al., Atomkernenergie-Kerntechnik 43 (1983), 184.

    Google Scholar 

  4. Petitjean, C. et al., Muon Cat. Fusion 5/6 (1990/91), 199.

    Google Scholar 

  5. Lauss, B. et al., Hyp. Interact. 118 (1999), 79.

    Article  ADS  Google Scholar 

  6. Kammel, P. et al., Phys. Lett. 112B (1982), 319; Phys. Rev. A 28 (1983), 2611.

    ADS  Google Scholar 

  7. Zmeskal, H. et al., Phys. Rev. A 42 (1990), 1165.

    Article  ADS  Google Scholar 

  8. Voropaev, N. I. et al., Hyp. Interact., this issue; Petitjean, C. et al., Hyp. Interact. 101/102 (1996) 1, and 118 (1999), 127; Voropaev, N. I. et al., Hyp. Interact. 118 (1999), 135.

  9. Bleser, E. J. et al., Phys. Rev. 132 (1963), 2679.

    Article  ADS  Google Scholar 

  10. Naegele, N. et al., Nucl. Phys. 439A (1989), 397.

    ADS  Google Scholar 

  11. Friar, J. L. et al., Phys. Rev. Lett. 66 (1991), 1827.

    Article  ADS  Google Scholar 

  12. Bogdanova, L. and Markushin, V., Muon Cat. Fusion 5/6 (1990/91), 189.

    Google Scholar 

  13. Olin, A., et al., Hyp. Interact. 118 (1999), 163.

    Article  ADS  Google Scholar 

  14. Hartmann, J., et al., Hyp. Interact. 82 (1993), 259; Baumann, P. et al., Phys. Rev. Lett. 70 (1993), 3720.

    Article  Google Scholar 

  15. Dzhelepov, V. P. et al., Sov. Phys. JETP 23 (1966), 820; Bystritsky, V. M. et al., Sov. Phys. JETP 49 (1979), 232.

    ADS  Google Scholar 

  16. Vinitsky, S. I. et al., Sov. Phys. JETP 47 (1978), 444.

    Google Scholar 

  17. Vesman, E. A., Sov. Phys. JETP Lett. 5 (1967), 9.

    Google Scholar 

  18. Gershtein, S. S. and Ponomarev, L. I. Phys. Let. 72B (1977), 80.

    Article  ADS  Google Scholar 

  19. Scrinzi, A. et al., Phys. Rev. A 47 (1993), 4691.

    Article  ADS  Google Scholar 

  20. Men'shikov, L. I. et al., Sov. Phys. JETP 65 (1987), 656; Faifman, M. et al., Muon Cat. Fusion 4 (1989) 1, and Hyp. Interact. 101/102 (1996), 179.

    Google Scholar 

  21. Zmeskal, J. et al., Muon Cat. Fusion 5/6 (1990/91), 379.

    Google Scholar 

  22. Breunlich, W. et al., Phys. Rev. Lett. 53 (1984), 1137.

    Article  ADS  Google Scholar 

  23. Breunlich, W. et al., Muon Cat. Fusion 1 (1987), 67.

    Google Scholar 

  24. Kammel, P. et al., Muon Cat. Fusion 3 (1988), 483.

    Google Scholar 

  25. Jeitler, M. et al., Phys. Rev. A 51 (1995), 2881.

    Article  ADS  Google Scholar 

  26. Faifman, M. and Ponomarev, L. I., Phys. Lett. B 265 (1991), 201.

    Article  ADS  Google Scholar 

  27. Breunlich, W. et al., Phys. Rev. Lett. 58 (1987), 329.

    Article  ADS  Google Scholar 

  28. Petitjean, C. et al., Muon Cat. Fusion 2 (1988), 37.

    Google Scholar 

  29. Petitjean, C., Nucl. Phys. A 543 (1992), 79; Few-Body Systems Suppl. 8 (1995), 235.

    Article  ADS  Google Scholar 

  30. Ackerbauer, P. et al., Nucl. Physics A 652 (1999), 311.

    Article  ADS  Google Scholar 

  31. Jones, S. E. et al., Phys. Rev. Lett. 56 (1986), 588; Nature 321 (1986), 127.

    Article  ADS  Google Scholar 

  32. Petitjean, C. et al., Hyp. Interact. 82 (1993), 273.

    Article  Google Scholar 

  33. Markushin, V. et al., Hyp. Interact. 82 (1993), 373; Markushin, V., Phys. Rev. A 50 (1994), 1137.

    Article  Google Scholar 

  34. Balin, D. V., et al., Muon Cat. Fusion 5/6 (1990/91), 481.

    Google Scholar 

  35. Kamimura, M. et al., Hyp. Interact. 118 (1999), 217.

    Article  ADS  Google Scholar 

  36. Stodden, C. D. et al., Phys. Rev. A 41 (1990), 1281.

    Article  ADS  Google Scholar 

  37. Bossy, H. et al., Phys. Rev. Lett. 59 (1987), 2864.

    Article  ADS  Google Scholar 

  38. Case, T. et al., Hyp. Interact. 82 (1993), 295.

    Article  Google Scholar 

  39. Lou, K. et al., Hyp. Interact. 82 (1993), 313.

    Article  Google Scholar 

  40. Ishida, K. et al., Hyp. Interact. 118 (1999), 203 and this issue.

    Article  ADS  Google Scholar 

  41. Petitjean, C. et al., Muon Cat. Fusion 1 (1987), 89.

    Google Scholar 

  42. Case, T. et al., Hyp. Interact. 118 (1999), 197.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petitjean, C. The μCF Experiments at PSI – A Conclusive Review. Hyperfine Interactions 138, 191–201 (2001). https://doi.org/10.1023/A:1020883708302

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020883708302

Navigation