Skip to main content
Log in

Enantiomeric Anosmia in Scarab Beetles

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The sex pheromone for Anomala octiescostata has been previously identified as a 4:1 mixture of (R)-buibuilactone and (R)-japonilure. Field experiments showed that although not active per se, the secondary component increased the activity of major component, buibuilactone. The enantiomers of these semiochemicals, i.e., (S)-buibuilactone and (S)-japonilure are neither attractants nor behavioral antagonists to the pheromone system of A. octiescostata. Chiral GC-EAD experiments demonstrated that, in marked contrast to the Japanese beetle and Osaka beetle, which can detect a stereoisomer not produced by their conspecific females, the male antennae of A. octiescostata lack olfactory receptor neurons (ORNs) tuned to (S)-buibuilactone. The same enantiomeric anosmia (inability to smell a compound) was also observed in Anomala cuprea male antennae. Both in a Y-olfactometer and field experiments, it was clarified that (S)-buibuilactone was not a behavioral antagonist for A. cuprea. Contrary to male antennae of both A. octiescostata and A. cuprea, which lack ORNs tuned to the nonnatural (S)-buibuilactone, fragrance evaluation by skilled perfumers revealed that the human nose can discriminate (both in intensity and quality) enantiomerically pure samples of (R)- and (S)-buibuilactone and japonilure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anonymous. 1989. Software for Statistical Visualization on the Apple Macintosh. JMP Introductory Guide. SAS Institute, Inc., Cary, North Carolina.

  • Butenandt, A., and Hecker, E. 1961. Synthese des Bombykols, des Sexual-Lockstoffes des Seidenspinners, und seiner geometrischen Isomeren. Angew. Chem. 73:349–353.

    Google Scholar 

  • Fabro, S. 1981. Biochemical basis of thalidomide teratogenicity, pp. 159–178, in M. R. Juchau (ed.). Biochemical Basis of Chemical Teratogenicity. Elsevier, New York.

    Google Scholar 

  • Fabro, S., Smith, R. L., and Willaims, R. T. 1967. Toxicity and teratogenicity of optical isomers of thalidomide. Nature 215:296.

    PubMed  Google Scholar 

  • Faigle, J. W., Keberle, H., Riess, W., and Schmid, K. 1962. The metabolic fate of thalidomide. Experientia 18:389–397.

    Google Scholar 

  • Friedman, L., and Miller, J. G. 1971. Odor incogruity and chirality. Science 172:1044–1046.

    PubMed  Google Scholar 

  • Kohler, F., Meise, W., and Ockenfels, H. 1971. Teratologische Prüfung einiger Thalidomid-Metabolite, Experientia 27:1149–1150.

    PubMed  Google Scholar 

  • Larsson, M., Leal, W. S., Hansson, B. S. 1999. Olfactory receptor neurons specific to chiral pheromone components in male and female Anomala cuprea beetles (Coleoptera: Scarabaeidae). J. Comp. Physiol. A. In press.

  • Leal, W. S. 1991. (R,Z)-5-(−)-(Oct-1-enyl)oxacyclopentan-2-one, the sex pheromone of the scarab beetle Anomala cuprea. Naturwissenschaften 78:521–523.

    Google Scholar 

  • Leal, W. S. 1996. Chemical communication in scarab beetles: Reciprocal behavioral agonist-antagonist activities of chiral pheromones. Proc. Natl. Acad. Sci. U.S.A. 93:12112–12115.

    PubMed  Google Scholar 

  • Leal, W. S., and Mochizuki, F. 1993. Sex pheromone reception in the scarab beetle Anomala cuprea: Enantiomeric discrimination in sensilla placodea. Naturwissenschaften 80:278–281.

    Google Scholar 

  • Leal, W. S., Sawada, M., and Hasegawa, M. 1993. The scarab beetle Anomala cuprea utilizes the sex pheromone of Popillia japonica as a minor component. J. Chem. Ecol. 19:1303–1313.

    Google Scholar 

  • Leal, W. S., Hasegawa, M., Sawada, M., Ono, M., and Ueda, Y. 1994. Identification and field evaluation of Anomala octiescostata (Coleoptera: Scarabaeidae) sex pheromone. J. Chem. Ecol. 20:1643–1655.

    Google Scholar 

  • Leal, W. S., Shi, X., Liang, D., Schal, C., and Meinwald, J. 1995. Application of chiral gas chromatography with electroantennographic detection to the determination of the stereochemistry of a cockroach sex pheromone. Proc. Natl. Acad. Sci. U.S.A. 92:1033–1037.

    PubMed  Google Scholar 

  • Leal, W. S., Kuwahara, S., Ono, M., and Sakae, K. 1996. (R,Z)-7,15-Hexadecadien-4-olide, sex pheromone of the yellowish elongate chafer, Heptophylla picea. Bioorg. Med. Chem. 4:315–321.

    PubMed  Google Scholar 

  • Leitereg, T. J., Guadagni, D. G., Harris, J., Mon, T. R., and Teranishi, R. 1971. Evidence for the difference between the odours of the optical isomers (+) and (−)-carvone. Nature 230:455–456.

    PubMed  Google Scholar 

  • Matsuyama, S., Leal, W. S., Hasegawa, M., and Sawada, M. 1992. Is chirality essential for pheromonal activity in scarab beetles? The case of the large black chafer, H. parallela. Proceedings, 38th Annual Meeting of the Japan Society for Bioscience, Biotechnology, and Agrochemistry.

  • Ockenfels, H., and Kohler, F. 1970. Das L-isomere als teratogenes Prinzip der N-phthalyl-DL-glutaminsäure. Experientia 26:1236–1237.

    Google Scholar 

  • Ono, M., Mori, M., and Leal, W. S. 1994. Development of pheromone traps. Nippon Nogeikagaku Kaishi 68:1281–1287 (in Japanese).

    Google Scholar 

  • Piutti, M. A. 1886. Sur une nouvelle espece d'asparagine. C.R. Acad. Sci. 103:134–138.

    Google Scholar 

  • Russel, G. F., and Hills, J. I. 1971. Odor differences between enantiomeric isomers. Science 172:1043–1044.

    PubMed  Google Scholar 

  • Seybold, S. 1993. Role of chirality in olfactory-directed behavior: Aggregation of pine engraver beetles in the genus Ips (Coleoptera: Scolytidae). J. Chem. Ecol. 19:1809–1831.

    Google Scholar 

  • Silverstein, R. M. 1979. Enantiomeric composition and bioactivity of chiral semiochemicals in insects, pp. 133–146, in R. J. Ritter (ed.). Chemical Ecology: Odour Communication in Animals. Elsevier, Amsterdam.

    Google Scholar 

  • Silverstein, R. M., Rodin, J. O., Wood, D. L., and Browne, L. E. 1966. Identification of two new terpene alcohols from frass produced by Ips confusus in ponderosa pine. Tetrahedron 22:1929–1936.

    Google Scholar 

  • Stinson, S. C. 1993. Chiral drugs. Chem. Eng. News 39:38–64.

    Google Scholar 

  • Tumlinson, J. H., Klein, M. G., Doolittle, R. E., Ladd, T. L., and Proveaux, A. T. 1977. Identification of the female Japanese beetle sex pheromone: Inhibition of male response by an enantiomer. Science 197:789–792.

    Google Scholar 

  • Wnendt, S., and Zwingenberger, K. 1997. Thalidomide's chirality. Nature 385:303–304.

    PubMed  Google Scholar 

  • Wojtasek, H., Hansson, B. S., and Leal, W. S. 1998. Attracted or repelled—a matter of two neurons, one pheromone binding protein, and a chiral center. Biochem. Biophys. Res. Commun. 250:217–222.

    PubMed  Google Scholar 

  • Zhang, A., Robbins, P. S., Leal, W. S., Linn, Jr., C. E., Villani, M. G., and Roelofs, W. L. 1997. Essential amino acid methyl esters: major sex pheromone components of the cranberry white grub, Phyllophaga anxia (Coleoptera: Scarabaeidae). J. Chem. Ecol. 23:231–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leal, W.S. Enantiomeric Anosmia in Scarab Beetles. J Chem Ecol 25, 1055–1066 (1999). https://doi.org/10.1023/A:1020877724761

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020877724761

Navigation