Skip to main content
Log in

Results for the tμ+D2 Reaction by the Methods of Quantum Reactive Scattering

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

In a recent paper [1], we applied the methods of quantum reactive scattering to the key resonant reaction in the muon catalyzed fusion (MCF) cycle that leads to the formation of a dtμ muonic molecular ion, in which fusion takes place very rapidly. We calculated reaction probabilities for tμ + D2 scattering for incident kinetic energies less than 0.6 eV in the centre of mass frame and total angular momentum J tot=0, using the APH (adiabatically adjusting, principal axes hyperspherical) formalism of Pack and Parker [2], which had previously been applied to simple chemical reactions. This was the first successful application of the above methods to the tμ + D2 reaction. In this paper, we examine a significant discrepancy between our values for the back decay partial width for the resonances we consider and the results that have been obtained using previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeman, V., Armour, E. A. G. and Pack, R. T., Phys. Rev. A 61 (2000), 052713.

    Article  ADS  Google Scholar 

  2. Pack, R. T. and Parker, G. A., J. Chem. Phys. 87 (1987), 3888; (1987), 90; (1989), 3511.

    Article  ADS  Google Scholar 

  3. Armour, E. A. G., J. Chem. Soc., Faraday Trans. 93 (1997), 1011.

    Article  Google Scholar 

  4. Vinitsky, S. I., Ponomarev, L. I. and Faifman, M. P., Zh. Eksp. Teor. Fiz. 85 (1982), 985 [Sov. Phys. JETP 55 (1982), 578].

    Google Scholar 

  5. Bhatia, A. K., Drachman, R. J. and Chatterjee, L., Phys. Rev. A 38 (1988), 3400.

    Article  ADS  Google Scholar 

  6. Scrinzi, A. and Szalewicz, K., Phys. Rev. A 39 (1989), 2855.

    Article  ADS  Google Scholar 

  7. Armour, E. A. G., Lewis, D. M. and Hara, S., Phys. Rev. A 46 (1992), 6888.

    Article  ADS  Google Scholar 

  8. Kołos, W. and Wolniewicz, L., J. Mol. Spect. 54 (1975), 303.

    Article  ADS  Google Scholar 

  9. Bransden, B. H. and Joachain, C. J., Physics of Atoms and Molecules, Longman, London and New York, 1983.

    Google Scholar 

  10. Petrov, Yu. V. and Petrov, V. Yu., Zh. Eksp. Teor. Fiz. 100 (1991), 56 [Sov. Phys. JETP 73 (1991), 29].

    Google Scholar 

  11. Faifman, M. P., Men'shikov, L. I., Ponomarev, L. I., Puzynin, I. V., Puzynina, T. P. and Strizh, T. A., Z. Phys. D 2 (1986), 79.

    Article  Google Scholar 

  12. Scrinzi, A., Szalewicz, K. and Monkhorst, H. J., Phys. Rev. A 37 (1988), 2270.

    Article  ADS  Google Scholar 

  13. Men'shikov, L. I., Yad. Fiz. 42 (1985), 1184 [Sov. J. Nucl. Phys. 42 (1985), 750].

    Google Scholar 

  14. Men'shikov, L. I. and Faifman, M. P., Yad. Fiz. 43 (1986), 650 [Sov. J. Nucl. Phys. 43 (1986), 414].

    Google Scholar 

  15. Faifman, M. P., Men'shikov, L. I. and Strizh, T. A., Muon Catal. Fusion 4 (1989), 1.

    Google Scholar 

  16. Faifman, M. P., Strizh, T. A., Armour, E. A. G. and Harston, M. R., Hyp. Interact. 101 (1996), 179; Mathematics Preprint Series, University of Nottingham 94.32 (1994).

  17. Lane, A. M., Phys. Letts. 98A (1983), 337.

    Article  ADS  Google Scholar 

  18. Vinitsky, S., Ponomarev, L. I., Puzynin, I. V., Puzynina, T. P., Somov, L. N. and Faifman, M. P., Zh. Eksp. Teor. Fiz. 74 (1978), 849 [Sov. Phys. JETP 47 (1978), 444].

    Google Scholar 

  19. Ponomarev, L. I., Contemp. Phys. 31 (1990), 219.

    ADS  Google Scholar 

  20. Froelich, P., Adv. Phys. 41 (1992), 405.

    Article  ADS  Google Scholar 

  21. Faifman, M. P., Muon Catal. Fusion 4 (1989), 341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeman, V., Armour, E.A.G. Results for the tμ+D2 Reaction by the Methods of Quantum Reactive Scattering. Hyperfine Interactions 138, 255–264 (2001). https://doi.org/10.1023/A:1020800211936

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020800211936

Navigation