Skip to main content
Log in

Bilirubin Inhibits Ca2+-Dependent Release of Norepinephrine from Permeabilized Nerve Terminals

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Although the well-known neurotoxic agent bilirubin can induce alterations in neuronal signaling, direct effects on neurotransmitter release have been difficult to demonstrate. In the present study we have used permeabilized nerve terminals (synaptosomes) from rat brain prelabeled with [3H]norepinephrine to examine the effects of bilirubin on transmitter release. Rat cerebrocortical synaptosomes were permeabilized with streptolysin-O (2 U/ml) in the absence or presence of bilirubin (10 μM–320 μM) and Ca2+ (100 μM), and the amount of radiolabeled transmitter released during 5 min to the medium was analysed. Low levels of bilirubin decreased Ca2+-evoked release in a dose-dependent manner, with half-maximal effect at approx 25 μM bilirubin. Higher levels of bilirubin (100–320 μM) increased [3H]norepinephrine efflux in the absence of Ca2+, suggesting that high bilirubin levels induced leakage of transmitter from vesicles. The nontoxic precursor biliverdin had no effect on Ca2+-dependent exocytosis. Our data indicate that bilirubin directly inhibits both exocytotic release and vesicular storage of brain catecholamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hansen, T. W. R. and Bratlid, D. 1986. Bilirubin and brain toxicity. Acta Paediatr. Scand. 75:513–522.

    PubMed  Google Scholar 

  2. Perlman, M., Fainmesser, P., Sohmer, H., Tamari, H., Wax, Y., and Pevsmer, B. 1983. Auditory nerve-brainstem evoked responses in hyperbilirubinemic neonates. Pediatrics 72:658–664.

    PubMed  Google Scholar 

  3. Karplus, M., Lee, C., Cashore, W. J., and Oh, W. 1988. The effects of brain bilirubin deposition on auditory brain stem evoked responses in rats. Early Hum. Dev. 16:185–194.

    PubMed  Google Scholar 

  4. Hansen, T. W. R., Cashore, W. J., and Oh, W. 1992. Changes in piglet auditory brainstem response amplitudes without increases in serum or cerebrospinal fluid neuron-specific enolase. Pediatr. Res. 32:524–529.

    PubMed  Google Scholar 

  5. Hansen, T. W. R., Paulsen, O., Gjerstad, L., and Bratlid, D. 1988. Short-term exposure to bilirubin reduces synaptic activation in rat transverse hippocampal slices. Pediatr. Res. 23:453–456.

    PubMed  Google Scholar 

  6. Hansen, T. W. R., Bratlid, D., and Walaas, S. I. 1988. Bilirubin decreases phosphorylation of synapsin I, a synaptic vesicle-associated neuronal phosphoprotein, in intact synaptosomes from rat cerebral cortex. Pediatr. Res. 23:219–223.

    PubMed  Google Scholar 

  7. Ochoa, E. L. M., Wennberg, R. P., An, Y., Tandon, T., Takashima, T., Nguyen, T., and Chui, T. 1993. Interactions of bilirubin with isolated presynaptic nerve terminals: functional effects on the uptake and release of neurotransmitters. Cell. Mol. Neurobiol. 13:69–86.

    PubMed  Google Scholar 

  8. Cashore, W. J. and Kilguss, N. V. 1989. Inhibition of synaptosomal tyrosine uptake by bilirubin. Pediatr. Res. 25:209A.

    Google Scholar 

  9. Schweizer, F. E., Betz, H., and Augustine, G. J. 1995. From vesicle docking to endocytosis: intermediate reactions of exocytosis. Neuron 14:689–696.

    PubMed  Google Scholar 

  10. Sudhof, T. C. 1995. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645–653.

    Article  PubMed  Google Scholar 

  11. Neher E. 1998. Vesicle pools and Ca2+ microdomains: New tools for understanding their roles in neurotransmitter release. Neuron 20:389–399.

    PubMed  Google Scholar 

  12. Day, R. L. 1954. Inhibition of brain respiration in vitro by bilirubin: Reversal of inhibition by various means. Am. J. Dis. Child. 88:504–506.

    Google Scholar 

  13. Zetterström, R. and Ernster, L. 1956. Bilirubin, an uncoupler of oxidative phosphorylation in isolated mitochondria. Nature (London) 178:1335–1337.

    Google Scholar 

  14. Ernster, L., Herlin, L., and Zetterström, R. 1957. Experimental studies on the pathogenesis of kernicterus. Pediatrics 20:647–652.

    PubMed  Google Scholar 

  15. Ives, N. K., Bolas, B. M., and Gardiner, R. M. 1989. The effects of bilirubin on brain energy metabolism during hyperosmolar opening of the blood-brain barrier: an in vivo study using 31P nuclear magnetic resonance spectroscopy. Pediatr. Res. 26:356–361.

    PubMed  Google Scholar 

  16. Kashiwamata, S., Goto, S., Semba R. K., and Suzuki, F. N. 1979. Inhibition by bilirubin of (Na+/K+)-activated adenosine triphosphatase and K+-activated p-nitrophenylphosphatase activities of Nal-treated microsomes from young rat cerebrum. J. Biol. Chem. 254:4577–4588.

    PubMed  Google Scholar 

  17. Cowger, M. L. 1971. Mechanism of bilirubin toxicity on tissue culture cells: Factors that affect toxicity, reversibility by albumin, and comparison with other respiratory poisons and surfactants. Biochem. Med. 5:1–16.

    PubMed  Google Scholar 

  18. O'Callaghan, A. and Duggan, P. F. 1984. Possible biochemical basis for bilirubin neurotoxicity. Biochem. Soc. Trans. 12:483.

    Google Scholar 

  19. Mayor, F. J., Diez-Guerra, J., Valdivieso, F., and Mayor, F. 1986. Effect of bilirubin on the membrane potential of rat brain synaptosomes. J. Neurochem. 47:363–369.

    PubMed  Google Scholar 

  20. Roseth, S., Hansen, T. W. R., Fonnum, F., and Walaas, S. I. 1998. Bilirubin inhibits transport of neurotransmitters in synaptic vesicles. Pediatric Res. 44: 312–316.

    Google Scholar 

  21. Dekker, L. V., DeGraan, P. N., Oestreicher, A. B., Versteeg, D. H., and Gispen, W. H. 1989. Inhibition of noradrenaline release by antibodies to B-50 (GAP-43). Nature 342:74–76.

    PubMed  Google Scholar 

  22. Hens, J. J., Ghijsen, W. E., Dimjati, W., Wiegant, V. M., Oestreicher, A. B., Gispen, W. H., and DeGraan, P. N. 1993. Evidence for a role of protein kinase C substrate B-50 (GAP-43) in Ca2+-induced neuropeptide cholecystokinin-8 release from permeated synaptosomes. J. Neurochem. 61:602–609.

    PubMed  Google Scholar 

  23. Stecher, B., Hens, J. J., Weller, U., Gratzl, M., Gispen, W. H., and De Graan P.N. 1992. Noradrenaline release from permeabilized synaptosomes is inhibited by the light chain of tetanus toxin. FEBS Lett. 312:192–194.

    PubMed  Google Scholar 

  24. Tandon, A., Bannykh, S., Kowalchyk, J. A., Banerjee, A., Martin, T. F. J., and Balch, W. E. 1998. Differential regulation of exocytosis by calcium and CAPS in semi-intact synaptosomes. Neuron 21:147–154.

    PubMed  Google Scholar 

  25. Floor, E., Leventhal, P. S., Wang, Y., Meng, L., and Chen, W. 1995. Dynamic storage of dopamine in rat brain synaptic vesicles in vitro. J. Neurochem. 64:689–699.

    PubMed  Google Scholar 

  26. Hansen, T. W. R., Mathiesen, S. B. W., Sefland, I., and Walaas, S.I. 1996. Bilirubin inhibits Ca++-dependent release of norepinephrine from permeabilized nerve terminals. Pediatr. Res. 39:60A.

    Google Scholar 

  27. Hansen, T. W. R., Mathiesen, S. B. W., Sefland, I., and Walaas, S. I. 1996. Bilirubin increases leakage of 3H-norepinephrine from presynaptic vesicles in the absence of Ca++ Pediatr. Res. 39:60A.

    Google Scholar 

  28. Wang, J. K., Walaas, S. I., and Greengard, P. 1988. Protein phosphorylation in nerve terminals: comparison of calcium/calmodulin-dependent and calcium/diacyl-glycerol-dependent systems. J. Neurosci. 8:281–288.

    PubMed  Google Scholar 

  29. Helmerhorst, E., Stokes, G. B. 1978. Microcentrifuge desalting: A rapid, quantitative method for desalting small amounts of protein. Anal. Biochem. 104:130–135.

    Google Scholar 

  30. Dekker, L. V., DeGraan, P. N., Pijnappel, P., Oestreicher, A. B., and Gispen, W. H. 1991. Noradrenaline release from streptolysin O-permeated rat cortical synaptosomes: effects of calcium, phorbol esters, protein kinase inhibitors, and antibodies to the neuron-specific protein kinase C substrate B-50 (GAP-43). J. Neurochem. 56:1146–1153.

    PubMed  Google Scholar 

  31. Johnson, M. K. 1960. The intracellular distribution of glycolytic and other enzymes in rat-brain homogenates and mitochondrial preparations. Biochem. J. 77:610–618.

    PubMed  Google Scholar 

  32. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein determination with the Folin Phenol reagent. J. Biol. Chem. 193:265–279.

    PubMed  Google Scholar 

  33. Hansen, T. W. R., Mathiesen, S. B. W., and Walaas, S. I. 1996. Bilirubin has widespread inhibitory effects on protein phosphorylation. Pediatr. Res. 39:1072–1077.

    PubMed  Google Scholar 

  34. Churn, S. B., DeLorenzo, R. J., and Shapiro, S. M. 1996. Bilirubin induces a calcium-dependent inhibition of multifunctional Ca2+/calmodulin-dependent kinase II activity in vitro. Pediatr. Res. 38:949–954.

    Google Scholar 

  35. Li, L., Chin, L. S., Shupliakov, O., Brodin, L., Sihra, T. S., Hvalby, Ø., Jensen, V., Zheng, D., McNamara, J. O., Greengard, P. et al. 1995. Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc. Natl. Acad. Sci. USA 92:9235–9239.

    PubMed  Google Scholar 

  36. Nakanishi, N., Onozawa, S., Matsumoto, R., Hasegawa, H., and Yamada, S. 1995. Cyclic AMP-dependent modulation of vesicular monoamine transport in pheochromocytoma cells. J. Neurochem. 64:600–607.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, T.W.R., Mathiesen, S.B., Sefland, I. et al. Bilirubin Inhibits Ca2+-Dependent Release of Norepinephrine from Permeabilized Nerve Terminals. Neurochem Res 24, 733–738 (1999). https://doi.org/10.1023/A:1020775312214

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020775312214

Navigation