Skip to main content
Log in

The Administration of Levocabastine, a NTS2 Receptor Antagonist, Modifies Na+, K+-ATPase Properties

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neurotensin behaves as a neuromodulator or as a neurotransmitter interacting with NTS1 and NTS2 receptors. Neurotensin in vitro inhibits synaptosomal membrane Na+, K+-ATPase activity. This effect is prevented by administration of SR 48692 (antagonist for NTS1 receptor). The administration of levocabastine (antagonist for NTS2 receptor) does not prevent Na+, K+-ATPase inhibition by neurotensin when the enzyme is assayed with ATP as substrate. Herein levocabastine effect on Na+, K+-ATPase K+ site was explored. For this purpose, levocabastine was administered to rats and K+-p-nitrophenylphosphatase (K+-p-NPPase) activity in synaptosomal membranes and [3H]-ouabain binding to cerebral cortex membranes were assayed in the absence (basal) and in the presence of neurotensin. Male Wistar rats were administered with levocabastine (50 μg/kg, i.p., 30 min) or the vehicle (saline solution). Synaptosomal membranes were obtained from cerebral cortex by differential and gradient centrifugation. The activity of K+-p-NPPase was determined in media laking or containing ATP plus NaCl. In such phosphorylating condition enzyme behaviour resembles that observed when ATP hydrolyses is recorded. In the absence of ATP plus NaCl, K+-p-NPPase activity was similar for levocabastine or vehicle injected (roughly 11 μmole hydrolyzed substrate per mg protein per hour). Such value remained unaltered by the presence of 3.5 × 10−6 M neurotensin. In the phosphorylating medium, neurotensin decreased (32 %) the enzyme activity in membranes obtained from rats injected with the vehicle but failed to alter those obtained from rats injected with levocabastine. Levocabastine administration enhanced (50 %) basal [3H]-ouabain binding to cerebral cortex membranes but failed to modify neurotensin inhibitory effect on this ligand binding. It is concluded that NTS2 receptor blockade modifies the properties of neuronal Na+, K+-ATPase and that neurotensin effect on Na+, K+-ATPase involves NTS1 receptor and -at least partially- NTS2 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NTS1 receptor:

High affinity neurotensin receptor

NTS2 receptor:

Low affinity neurotensin receptor

p-NP:

p-Nitrophenol

p-NPP:

p-Nitrophenylphosphate

p-NPPase:

p-Nitrophenylphosphatase

References

  1. Kitabgi P, Nemeroff CB (1992) The neurobiology of neurotensin. Ann N Y Acad Sci 668:1–374

    Article  Google Scholar 

  2. Carraway R, Leeman SE (1973) The isolation of a new hypotensive peptide neurotensin from bovine hypothalami. J Biol Chem 248:6854–6861

    CAS  PubMed  Google Scholar 

  3. Vincent JP, Mazella J, Kitabgi P (1999) Neurotensin and neurotensin receptors. Trends Pharmacol 2:302–309

    Article  Google Scholar 

  4. Dobner PR (2005) Multitasking with neurotensin in the central nervous system. Cell Mol Life Sci 62:1946–1963

    Article  CAS  PubMed  Google Scholar 

  5. Albers RW, Siegel GJ (2012) Membrane transport. In: Brady ST, Siegel GJ, Albers RW, Price D (eds) Basic neurochemistry: principles of molecular, cellular and medical neurobiology, 8th edn. Elsevier Academic Press, Massachusetts, USA, pp 41–62

    Google Scholar 

  6. Rodríguez de Lores Arnaiz G (2007) Na+, K+-ATPase in the brain: structure and function. In: Reith MEA (ed) Neural Membranes and Transport. Lajtha A (ed) Handbook of Neurochemistry and Molecular Neurobiology Vol. 11, Springer-Verlag, Berlin-Heidelberg, pp 209–224

  7. Rodríguez de Lores Arnaiz G, Alberici M, De Robertis E (1967) Ultrastructural and enzymic studies of cholinergic and non–cholinergic synaptic membranes isolated from brain cortex. J Neurochem 14:215–225

    Article  Google Scholar 

  8. López Ordieres MG, Rodríguez de Lores Arnaiz G (2000) Neurotensin inhibits neuronal Na+, K+-ATPase activity through high affinity peptide receptor. Peptides 21:571–576

    Article  PubMed  Google Scholar 

  9. López Ordieres MG, Rodríguez de Lores Arnaiz G (2001) K+-p-nitrophenylphosphatase inhibition by neurotensin involves high affinity neurotensin receptor: influence of potassium concentration and enzyme phosphorylation. Regul Pept 101:183–187

    Article  PubMed  Google Scholar 

  10. Álvarez Juliá A, Gutnisky A, López Ordieres MG, Rodríguez de Lores Arnaiz G (2013) High affinity receptors but not low affinity receptors for neurotensin are involved in neuronal Na+, K+-ATPase inhibition by the peptide. Curr Top Pept Protein Res 14:27–32

    Google Scholar 

  11. Tyler BM, Groshan K, Cusack B, Richelson E (1998) In vivo studies with low doses of levocabastine and diphenhydramine, but not pyrilamine, antagonize neurotensin-mediated antinociception. Brain Res 787:78–84

    Article  CAS  PubMed  Google Scholar 

  12. Albers RW, Rodríguez de Lores Arnaiz G, De Robertis E (1965) Sodium-potassium-activated ATPase and potassium-activated p-nitrophenylphosphatase: a comparison of their subcellular localizations in rat brain. Proc Natl Acad Sci USA 53:557–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lowry OH, López JH (1946) Determination of inorganic phosphate in presence of labile P esters. J Biol Chem 162:421–428

    CAS  PubMed  Google Scholar 

  14. Antonelli M, Casillas T, Rodríguez de Lores Arnaiz G (1991) Effect of Na+, K+-ATPase modifiers on high-affinity ouabain binding determined by quantitative autoradiography. J Neurosci Res 28:324–331

    Article  CAS  PubMed  Google Scholar 

  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  16. Yoshida H, Nagai K, Ohashi T, Nakagawa Y (1969) K+-dependent phosphatase activity observed in the presence of both adenosine triphosphate and Na+. Biochim Biophys Acta 171:178–185

    Article  CAS  PubMed  Google Scholar 

  17. Fukushima Y, Post RL (1978) Binding of divalent cation to phosphoenzyme of sodium- and potassium-transport adenosine triposphatase. J Biol Chem 253:6853–6862

    CAS  PubMed  Google Scholar 

  18. Swann AC, Albers RW (1978) Sodium and potassium ion-dependent adenosine triphosphatase of mammalian brain: interactions of magnesium ions with the phosphatase site. Biochim Biophys Acta 523:215–227

    Article  CAS  PubMed  Google Scholar 

  19. Rosin C, López Ordieres MG, Rodríguez de Lores Arnaiz G (2011) Neurotensin decreases high affinity [3H]-ouabain binding to cerebral cortex membranes. Regul Pept 172:35–40

    Article  CAS  PubMed  Google Scholar 

  20. Vita N, Oury-Donat F, Chalon P, Guillemot M, Kaghad M, Bachy A, Thurneyssen O, García S, Poinot-Chazel C, Casellas P, Keane P, Le Fur G, Maffrand JP, Soubrie P, Caput D, Ferrara P (1998) Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells. Eur J Pharmacol 360:265–272

    Article  CAS  PubMed  Google Scholar 

  21. Han CS, Tobin T, Akera T, Brody TM (1976) Effects of alkali metal cations on phospho-enzyme levels and [3H]ouabain binding to (Na+ + K+)-ATPase. Biochim Biophys Acta 429:993–1005

    Article  CAS  PubMed  Google Scholar 

  22. Songu-Mize E, Gunter JL, Caldwell RW (1989) Comparative ability of digoxin and an aminosugar cardiac glycoside to bind to and inhibit Na+, K+ -adenosine triphosphatase: effect of potassium. Biochem Pharmacol 38:3689–3695

    Article  CAS  PubMed  Google Scholar 

  23. Johnson CL, Schultheis PJ, Lingrel JB, Johnson CG, Wallick ET (1995) Comparison of the effects of potassium on ouabain binding to native and site-directed mutants of Na, K-ATPase. Arch Biochem Biophys 317:133–141

    Article  CAS  PubMed  Google Scholar 

  24. Ogawa H, Shinoda T, Cornelius F, Toyoshima C (2009) Crystal structure of the sodium-potassium pump (Na+, K+-ATPase) with bound potassium and ouabain. Proc Natl Acad Sci USA 106:13742–13747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sandtner W, Egwolf B, Khalili-Araghi F, Sánchez-Rodríguez JE, Roux B, Bezanilla F, Holmgren M (2011) Ouabain binding site in a functioning Na+, K+-ATPase. J Biol Chem 286:38177–38183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weigand KM, Messchaert M, Swarts HG, Russel FG, Koenderink JB (2014) Alternating Hemiplegia of childhood mutations have a differential effect on Na+, K+-ATPase activity and ouabain binding. Biochim Biophys Acta 1842:1010–1016

    Article  CAS  PubMed  Google Scholar 

  27. Hegyvary C, Jorgensen PL (1981) Conformational changes of renal sodium plus potassium iontransport adenosine triphosphatase labeled with fluorescein. J Biol Chem 256:6296–6303

    CAS  PubMed  Google Scholar 

  28. Heykants J, Van Peer A, Van de Velde V, Snoeck E, Meuldermans W, Woestenborghs R (1995) The pharmacokinetic properties of topical levocabastine: a review. Clin Pharmacokinet 29:221–230

    Article  CAS  PubMed  Google Scholar 

  29. Wijk RG (1995) Treatment of allergic rhinoconjunctivitis: a review of the role of topical levocabastine. Mediators Inflamm 4:S31–S38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sheikh A, Singh Panesar S, Dhami S, Salvilla S (2007) Seasonal allergic rhinitis in adolescents and adults. Clin Evid (Online) pii: 0509

  31. Tasaka K, Kamei C, Tsujimoto S, Yoshida T, Aoki I (1990) Central effect of the potent long-acting H1-antihistamine levocabastine. Arzneimittelforschung 40:1295–1299

    CAS  PubMed  Google Scholar 

  32. Rombaut N, Bhatti JZ, Curran S, Hindmarch I (1991) Effects of topical administration of levocabastine on psychomotor and cognitive function. Ann Allergy 67:75–79

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

G. R. de L. A. is chief investigator from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). The authors are indebted to CONICET and Universidad de Buenos Aires, Argentina, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgina Rodríguez de Lores Arnaiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutnisky, A., López Ordieres, M.G. & Rodríguez de Lores Arnaiz, G. The Administration of Levocabastine, a NTS2 Receptor Antagonist, Modifies Na+, K+-ATPase Properties. Neurochem Res 41, 1274–1280 (2016). https://doi.org/10.1007/s11064-015-1823-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1823-7

Keywords

Navigation