Skip to main content
Log in

Free Radicals as Mediators of Neuronal Injury

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Free radicals may play an important role in several pathological conditions of the central nervous system (CNS) where they directly injure tissue and where their formation may also be a consequence of tissue injury.

2. Free radicals produce tissue damage through multiple mechanisms, including excitotoxicity, metabolic dysfunction, and disturbance of intracellular homeostasis of calcium.

3. Oxidative stress can significantly worsen acute insults, such as ischemia, as well as chronic neurodegenerative disorders including amyotrophic lateral sclerosis (ALS) and Parkinson's disease.

4. For instance, recent findings suggest a causal role for chronic oxidative stress in familial ALS, as this disease is linked to missence mutations of the copper/zinc superoxide dismutase (SOD).

5. Thus, therapeutic approaches which limit oxidative stress may be potentially beneficial in several neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Althaus, F. R., and Richer, C. (1987). ADP-ribosylation of proteins: enzymology and biological significance. In Molecular Biology, Biochemistry and Biophysics, Vol. 37, Springer-Verlag, New York, pp. 1–125.

    Google Scholar 

  • Amano, S., Toshiyuki, O., Fumitada, H., Nishizawa, K., and Morimi, S. (1990). Hypoxia prevents seizures and neural damage of the hippocampus induced by kainic acid in rats. Brain Res. 523:121–126.

    Google Scholar 

  • Aruoma, O. I., and Halliwell, B. (1987). Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Are lactoferrin and transferrin promoters of hydroxyl radical generation? Biochem. J. 241:273–278.

    Google Scholar 

  • Aust, S. D., Morehouse, L. A., and Thomas C. E. (1985). Role of metals in oxygen radical reactions. J. Free Rad. Biol. Med. 1:3–25.

    Google Scholar 

  • Baran, H., Lassman, H., Sperk, G., Seitelberger, F., and Hornykiewicz, O. (1987). Effect of mannitol treatment on brain neurotransmitter markers in kainic acid induced epilepsy. Neuroscience 21:679–684.

    Google Scholar 

  • Battelli, M. G., Bonamici, L., Abbondanza, A., Virgili, M., Contestabile, A., and Stirpe, F. (1995). Excitotoxic increase of xanthine dehydrogenase and xanthin oxidase in the rat olfactory cortex. Brain Res. 86:340–344.

    Google Scholar 

  • Beckman, J. S. (1994). Peroxynitrite versus hydroxyl radical: The role of nitric oxide in superoxide-dependent cerebral injury. Ann. N.Y. Acad. Sci. 738:69–75.

    Google Scholar 

  • Beckman, J. S., Ischiropoulos, H., Zhu, L., van der Woerd, M., Smith, C., Chen, J., Harrison, J., Martin, J. C., and Tsai, M. (1992). Kinetics of superoxide dismutase-and iron catalyzed nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys. 298:438–445.

    Google Scholar 

  • Beckman, J. S., Carson, M., Smith, C. D., and Koppenol, W. H. (1993). ALS, SOD and peroxynitrite. Nature 364:584.

    Google Scholar 

  • Brenneman, D. E., Westbrook, G. L., Fitzgerald, S. P., Ennist, D. L., Elkins, K. L., Ruff, M. R., and Pert, C. B. (1988). Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature 335:639–642.

    Google Scholar 

  • Bo, L., Dawson, T. M., Wesselingh, S., Mork, S., Choi, S., Kong, P. A., Hanley, D., and Trapp, B. D. (1994). Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann. Neurol. 36:778–786.

    Google Scholar 

  • Boje, K. M., and Arora, P. K. (1992). Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 587:250–256.

    Google Scholar 

  • Bolanos, J. P., Peuchen, S., Heales, S. J., Land, J. M., and Clark, J. B. (1994). Nitric-oxide mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem. 63:910–916.

    Google Scholar 

  • Bondy, S. C., and Lee, D. K. (1993). Oxidative stress induced by glutamate receptor agonists. Brain Res. 610:229–233.

    Google Scholar 

  • Bukrinsky, M. I., Nottet, H. S., Schmidtmayerova, H., Dubrovsky, L., Flanagan, C. R., Mullins, M. E., Lipton, S. A., and Gendelman, H. E. (1995). Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease. J. Exp. Med. 181:735–745.

    Google Scholar 

  • Carreau, A., Duval, D., Poignet, H., Scatton, B., Vige, X., and Nowicki, J. P. (1994). Neuroprotective efficacy of N-omega-nitro-L-arginine after focal cerebral ischemia in the mouse and inhibition of cortical nitric oxide synthase. Eur. J. Pharmacol. 256:241–249.

    Google Scholar 

  • Cazevieille, C., Muller, A., Meynier, F., and Bonne, C. (1993). Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Radical Biol. Med. 14:389–395.

    Google Scholar 

  • Chan, P. H., Chu, L., Chen, S. F., Carlson, E. J., and Epstein, C. J. (1990). Reduced neurotoxicity in transgenic mice overexpressing human copper-zinc-superoxide dismutase. Stroke 21(Suppl III):80–82.

    Google Scholar 

  • Chan, P. H., Epstein, C. J., Kinouchi, H., Kamii, H., Imaizumi, S., Yang, G., Chen, S. F., Gafni, J., and Carlson, E. (1994). SOD-1 transgenic mice as a model for studies of neuroprotection in stroke and brain trauma. Ann. N.Y. Acad. Sci. 738:93–103.

    Google Scholar 

  • Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. G., and Peterson, P. K. (1992). Activated microglia mediate cell injury via a nitric oxide mechanism. J. Immun. 149:2736–2741.

    Google Scholar 

  • Cheng, Y., and Sun, A. Y. (1994). Oxidative mechanisms involved in kainate-induced cytotoxicity in cortical neurons. Neurochem. Res. 19:1557–1564.

    Google Scholar 

  • Choi, D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634.

    Google Scholar 

  • Choi, D. W. (1992). Excitotoxic cell death. J. Neurobiol. 23:1261–1276.

    Google Scholar 

  • Ciani, E., Groneng, L., Voltattorni, M., Rolseth, V., Constestabile, A., and Paulsen, R. E. (1996). Inhibition of free radical production or free radical scavenging protects from the excitotoxic cell death mediated by glutamate in cultures of cerebellar granule neurons. Brain Res. 728:1–6.

    Google Scholar 

  • Corasaniti, M., Tartaglia, R. L., Melino, G., Nistico, G., and Finazzi-Agro, A. (1992). Evidence that CHP100 neuroblastoma cell death induced by N-methyl-D-aspartate involves L-arginine-nitric oxide pathway activation. Neurosci. Lett. 147:221–223.

    Google Scholar 

  • Cosi, C., Suzuki, H., Milani, D., Menegazzi, M., Vantini, G., Kanai, Y., and Skaper, S. D. (1994). Poly(ADP-ribose) polymerase: Early involvement in glutamate-induced neurotoxicity in cultured cerebellar granule cells. J. Neurosci. Res. 39:38–46.

    Google Scholar 

  • Coyle, J. P., and Puttfarcken, P. S. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695.

    Google Scholar 

  • Cuthbert (1995). Wilson's disease: A new gene and an animal model for an old disease. J. Invest. Med. 43:323–336.

    Google Scholar 

  • Davies, K. J. A., and Goldberg, A. L. (1987). Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells. J. Biol. Chem. 262:8227–8234.

    Google Scholar 

  • Dawson, D. A. (1994). Nitric oxide and focal cerebral ischemia: Multiplicity of actions and diverse outcome. Cerebrovasc. Brain Metab. Rev. 6:299–324.

    Google Scholar 

  • Dawson, T. M., and Dawson, V. L. (1995). ADP-ribosylation as a mechanism for the action of nitric oxide in the nervous system. New Horiz. 3:85–92.

    Google Scholar 

  • Dawson, T. M., and Snyder, S. H. (1994). Gases as biological messengers: Nitric oxide and carbon monoxide in the brain. J. Neurosci. 14:5147–5149.

    Google Scholar 

  • Dawson, T. M., Steiner, J. P., Dawson, V. L., Dinerman, J. L., Uhl, G. R., and Snyder, S. H. (1993). Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc. Natl. Acad. Sci. USA 90:9808–9812.

    Google Scholar 

  • Dawson, T. M., Hung, K., Dawson, V. L., Steiner, J. P., and Snyder, S. H. (1995). Neuroprotective effects of gangliosides may involve inhibition of nitric oxide synthase. Ann. Neurol. 37:115–118.

    Google Scholar 

  • Dawson, V. L., and Dawson, T. M. (1995). Therapeutic approaches with nitric oxide synthase inhibitors. In Beal, M. F., Bodis Wollner, I., and Howell, N. (eds.), Neurodegenerative Diseases: Mitochondria and Free Radicals in Pathogenesis (in press).

  • Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., and Snyder, S. H. (1991). Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88:6368–6371.

    Google Scholar 

  • Dawson, V. L., Dawson, T. M., Uhl, G. R., and Snyder, S. H. (1993a). Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures. Proc. Natl. Acad. Sci. USA 90:3256–3259.

    Google Scholar 

  • Dawson, V. L., Dawson, T. M., Bartley, D. A., Uhl, G. R., and Snyder, S. H. (1993b). Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13:2651–2661.

    Google Scholar 

  • Dawson, V. L., Brahmbhatt, H. P., Mong, J. A., and Dawson, T. M. (1994). Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed neuronal-glial cortical cultures. Neuropharmacology 33:1425–1430.

    Google Scholar 

  • Dawson, V. L., Kizushi, V. M., Huang, P. L., Snyder, S. H., and Dawson, T. M. (1996). Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase deficient mice. J. Neurosci. 16:2479–2487.

    Google Scholar 

  • Della Corte, E., and Stirpe, F. (1968). The regulation of rat liver xanthine oxidase. Activation by proteolytic enzymes. FEBS Lett. 2:83–84.

    Google Scholar 

  • Della Corte, E., and Stirpe, F. (1972). The regulation of rat liver xanthine oxidase. Involvement of thiol groups in the conversion of the enzyme activity from dehydrogenase (Type D) into oxidase (Type O) and purification of the enzyme. Biochem. J. 126:739–745.

    Google Scholar 

  • Dexter, D. T., Carayon, A., Vidailhet, M., Rugberg, M., Agid, F., Agid, Y., Less, A. J., Wells, F. R., Jenner, P., and Marsden, C. D. (1990). Decreased ferritin levels in brain in Parkinson's disease. J. Neurochem. 55:16–20.

    Google Scholar 

  • Dexter, D. T., Jenner, P., Schapira, A. H. V., and Marsden, C. D. (1992). Alterations of levels of iron, ferritin and other trace metals in neurodegenerative diseases affecting the basal ganglia. Ann. Neurol. 32(Suppl.):94–100.

    Google Scholar 

  • Dreyer, E. B., Kaiser, P. K., Offermann, J. T., and Lipton, S. A. (1990). HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 248:364–367.

    Google Scholar 

  • Dugan, I. L., and Choi, D. W. (1994). Excitotoxicity, free radicals and cell membrane changes. Ann. Neurol. 35:517–521.

    Google Scholar 

  • Dykens, J. A., Stern, A., and Trenkner, E. (1987). Mechanisms of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J. Neurochem. 49:1222–1228.

    Google Scholar 

  • Dykens, J. A. (1994). Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: Implications for neurodegeneration. J. Neurochem. 63:584–591.

    Google Scholar 

  • Engerson, T. D., McKelvey, T. G., Rhyne, D. B., Boggio, E. B., Snyder, S. J., and Jones, H. P. (1987). Conversion of xanthine dehydrogenase to oxidase in ischemic rat tissues. J. Clin. Invest. 79:1564–1570.

    Google Scholar 

  • Evans, P. H. (1993). Free radicals in brain metabolism and pathology. Br. Med. Bull. 49:577–587.

    Google Scholar 

  • Facchinetti, F., and Contestabile, A. (1993). Neurochemical evaluation of the protective effects of mannitol and alpha-tocopherol in rats injected intra striatally with kainic acid. Neurodegeneration 2:123–127.

    Google Scholar 

  • Facchinetti, F., Virgili, M., Contestabile, A., and Barnabei, O. (1992). Antagonists of the NMDA receptor and allopurinol protect the olfactory cortex but not the striatum after intracerebral injection of kainic acid. Brain Res. 585:330–334.

    Google Scholar 

  • Fagni, L., Olivier, M., Lafoncazal, M., and Bockaert, J. (1995). Involvement of divalent ions in the nitric oxide-induced blockade of N-methyl-D-aspartate receptors in cerebllar granule cells. Mol. Pharmacol. 47:1239–1247.

    Google Scholar 

  • Ferrante, R. J., Kowall, N. W., Beal, M. F., Martin, J. B., and Richardson, E. P., Jr (1987). Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington's disease. J. Neuropathol. Exp. Neurol. 46:12–27.

    Google Scholar 

  • Glover, V., Clow, A., and Sandler, M. (1993). Effects of dopaminergic drugs on superoxide dismutase: Implications for senescence. J. Neural Transm. Suppl. 40:37–45.

    Google Scholar 

  • Gotz, M. E., Kunig, G., Riederer, P., and Youdim, M. B. H. (1994). Oxidative stress: Free radical production in neural degeneration. Pharmacol. Ther. 63:37–122.

    Google Scholar 

  • Gurney, M. E., Pu, H., Chiu, A. Y., Dal Canto, M. C., Polchow, C. Y., Alexander, D. D., Cliendo, J., Hentati, A., Kwon, Y. W., Deng, H., Chen, W., Zhai, P., Sufit, R. L., and Siddique, T. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775.

    Google Scholar 

  • Halliwell, B. (1992). Reactive oxygen species and the central nervous system. J. Neurochem. 59:1609–1623.

    Google Scholar 

  • Hill, J. M., and Switzer, R. C., III (1984). The regional distribution and cellular localization of iron in the rat brain. Neuroscience 3:595–603.

    Google Scholar 

  • Hollmann, M., and Heinemann, S. (1994). Cloned glutamate receptors. Annu. Rev. Neurosci. 17:31–108.

    Google Scholar 

  • Huang, Z., Huang, P. L., Panahian, N., Dalkara, T., Fishman, M. C., and Moskowitz, M. A. (1994). Effect of cerebral ischemia in mice deficient in neuronal nitric oxide. Science 265:1883–1885.

    Google Scholar 

  • Hyman, B. T., Marzloff, K., Wenniger, J. J., Dawson, T. M., Bredt, D. S., and Snyder, S. H. (1992). Relative sparing of nitric oxide synthase-containing neurons in the hippocampal formation in Alzheimer's disease. Ann Neurol. 32:818–820.

    Google Scholar 

  • Iadecola, C., Xu, X., Zhang, F., El-Fakahany, E. E., and Ross, M. E. (1995a). Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 15:52–59.

    Google Scholar 

  • Iadecola, C., Zhang, F., and Xu, X. (1995b). Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am. J. Physiol. 268:R286–R292.

    Google Scholar 

  • Iwahashi, H., Morishita, H., Ishii, T., Sugata, R., and Kido, R. (1989). Enhancement by catechols of hydroxyl radical formation in the presence of ferric ions and hydrogen peroxide. J. Biochem.429–434.

    Google Scholar 

  • Izumi, Y., Benz, A. M., Clifford, D. B., and Zorumski, C. F. (1992). Nitric oxide inhibitors attenuate N-methyl-D-aspartate excitotoxicity in rat hippocampal slices. Neurosci. Lett. 135:227–230.

    Google Scholar 

  • Jellinger, K., Kienzl, E., Rumplmair, G., Riederer, P., Stachelberger, H., Ben-Shachar, D., and Youdim, M. B. H. (1992). Iron-melanin complex in substantia nigra of Parkinsonian brains: An X-ray microanalysis. J. Neurochem. 59:1168–1171.

    Google Scholar 

  • Katsuki, H., and Okuda, S. (1995). Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46:607–636.

    Google Scholar 

  • Kinouchi, H., Epstein, C. J., Mizui, T., Carlson, E., Chen, S. F., and Chan, P. H. (1991). Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc. Natl. Acad. Sci. USA 88:11158–11162.

    Google Scholar 

  • Kitchener, P. O., Van der Zee, C., and Diamond, J. (1993). Lesion-induced NADPH-diaphorase reactivity in neocortical pyramidal neurons. Neuroreport 4:487–490.

    Google Scholar 

  • Koh, J. Y., and Choi, D. W. (1988). Cultured striatal neurons containing NADPH-diaphorase or acetylcholinesterase are selectively resistant to injury by NMDA receptor agonists. Brain Res. 446:374–378.

    Google Scholar 

  • Koka, P., He, K., Camerini, D., Tran, T., Yashar, S. S., and Merrill, J. E. (1995). The mapping of HIV-1 gp160 epitopes required for interleukin-1 and tumor necrosis factor alpha production in glial cells. J. Neuroimmunol. 57:179–191.

    Google Scholar 

  • Koliegger, H., McBean, G. J., and Tipton, K. F. (1993). Reduction of striatal N-methyl-D-aspartate toxicity by inhibition of nitric oxide synthase. Biochem. Pharmacol. 45:260–264.

    Google Scholar 

  • Kontos, H. A. (1989). Oxygen radicals in CNS damage. Chem. Biol. Interact. 72:229–255.

    Google Scholar 

  • Lafon-Cazal, M., Pietri, S., Culcasi, M., and Bockaert, J. (1993). NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537.

    Google Scholar 

  • Langston, J. W., Ballard, P. A., Tetrud, J. W., and Irwin, I. (1983). Chronic parkinsonism in human due to a product of meperidine-analog synthesis. Science 219:979–980.

    Google Scholar 

  • Lei, S. Z., Pan, Z. H., Aggarwal, S. K., Chen, H. S. V., Hartman, J., Sucher, N. J., and Lipton, S. A. (1992). Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 8:1087–1099.

    Google Scholar 

  • Lipton, S. A., Sucher, N. J., Kaiser, P. K., and Dreyer, E. B. (1991). Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity. Neuron111–118.

    Google Scholar 

  • Lustig, H. S., von Brauchitsch, K. L., Chan, J., and Greenberg, D. A. (1992). Ethanol and excitotoxicity in cultured cortical neurons: Differential sensitivity to N-methyl-D-aspartate and sodium nitroprusside toxicity. J. Neurochem. 577:343–346.

    Google Scholar 

  • Malinski, T., Bailey, F., Zhang, Z. G., and Chopp, M. (1993). Nitric oxide measured by a porphyrinuric micro sensor in rat brain after transient middle cerebral artery occlusion. J. Cereb. Blood Flow. Metab.355–358.

    Google Scholar 

  • McCay, P. B. (1985). Vitamin E: interactions with free radicals and ascorbate. Annu. Rev. Neurol.323–340.

    Google Scholar 

  • McCay, P. B., Fong, K. L., Lai, E. K., and King, M. M. (1978). Possible role of vitamin E as a free radical scavenger and singlet oxygen quencher in biological systems which initiate radical mediated reactions. In Duve, C. D., and Hayaishi, O. (eds.), Tocopherol, Oxygen and Biomembranes, Elsevier, North-Holland Biomedical Press, Amsterdam, pp. 41–57.

    Google Scholar 

  • Meldrum, B., and Garthwaite, J. (1990). Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11:379–387.

    Google Scholar 

  • Merrill, J. E., Ignarro, L. J., Sherman, M. P., Melinek, J., and Lane, T. E. (1993). Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J. Immunol. 151:2132–2141.

    Google Scholar 

  • Minc-Golomb, D., Tsarfaty, I., and Schwartz, J. P. (1994). Expression of inducible nitric oxide synthase by neurones following exposure to endotoxin and cytokine. Br. J. Pharmacol. 112:720–722.

    Google Scholar 

  • Moorhouse, P. C., Grootveld, M., Halliwell, B., Quinlan, J. G., and Gutteridge, J. M. (1987). Allopurinol and oxypurinol are hydroxyl radical scavengers. Fed. Eur. Biochem. 213:23–28.

    Google Scholar 

  • Monyer, H., Hartley, D. M., and Choi, D. W. (1990). 21-Aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures. Neuron 5:121–126.

    Google Scholar 

  • Mollace, V., Colasanti, M., Persichini, T., Bagetta, G., Lauro, G. M., and Nistico, G. (1993). HIV gp120 glycoprotein stimulates the inducible isoform of no synthase in human cultured astrocytoma cells. Biochem. Biophys. Res. Commun. 194:439–445.

    Google Scholar 

  • Nelson, C. W., Wei, E. P., Povlishock, J. T., Kontos, H. A., and Moskowitz, M. A. (1992). Oxygen radicals in cerebral ischemia. Am. J. Physiol. 263:1356–1362.

    Google Scholar 

  • O'Regan, M. H., Smith-Barbour, M., Perkins, L. M., Cao, X., and Phillis, J. W. (1994). The effect of amflutizole, a xanthine oxidase inhibitor, on ischemia-evoked purine release and free radical formation in the rat cerebral cortex. Neuropharmacology 33:1197–1201.

    Google Scholar 

  • Padh, H. (1991). Vitamin C, newer insights into its biochemical functions. Nutr. Rev. 49:65–70.

    Google Scholar 

  • Pellegrini-Giampietro, D. E., Cherici, G., Alesiani, M., Carla, V., and Moroni, F. (1988). Excitatory amino acid release from rat hippocampal slices as a consequence of free radical formation. Brain Res. 676:205–211.

    Google Scholar 

  • Phillis, J. W., Sen, S., and Cao, X. (1994). Amflutizole, a xanthine oxidase inhibitor, inhibits free radical generation in the ischemic/reperfused rat cerebral cortex. Neurosci. Lett. 169:188–190.

    Google Scholar 

  • Przedborski, S., Kostic, V., Jackson-Lewis, V., Naini, A. B., Simonetti, S., Fahn, S., Carlson, E., Epstein, C. J., and Cadet, J. L. (1992). Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J. Neurosci. 12:1658–1667.

    Google Scholar 

  • Przedborski, S., Jackson-Lewis, R., Yokoyama, V., Shibata, T., Dawson, V. L., and Dawson, T. M. (1996). Role of neuronal nitric oxide synthase in MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced dopaminergic neurotoxicity. Proc. Natl. Acad. Sci. USA 93:5037–5042.

    Google Scholar 

  • Rabizadeh, S., Gralla, E. B., Borchelt, D. R., Gwinn, R., Valentine, J. S., Sisodia, S., Wong, P., Lee, M., Hahn, H., and Bredesen, D. E. (1995). Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from anti apoptotic gene to a pro apoptotic gene: studies in yeast and neuronal cells. Proc. Natl. Acad. Sci. USA 92:3024–3028.

    Google Scholar 

  • Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. (1991). Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266:4244–4250.

    Google Scholar 

  • Reif, D. W. (1993). Delayed production of nitric oxide contributes to NMDA-mediated neuronal damage. Neuroreport 4:566–568.

    Google Scholar 

  • Reynolds, I. J., and Hastings, H. (1995). Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 15:3318–3327.

    Google Scholar 

  • Riederer, P., Sofic, E., Rausch, W. D., Schmidt, B., Reynolds, G. P., Jellinger, K., and Youdim, M. B. H. (1989). Transition metals, ferritin, glutethione and ascorbic acid in parkinsonian brains. J. Neurochem. 52:515–520.

    Google Scholar 

  • Ripps, M. E., Huntley, G. W., Hof, P. R., Morrison, J. H., and Gordon, J. W. (1995). Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model for amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 92:689–693.

    Google Scholar 

  • Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J. P., Deng, H. X., Rahamani, Z., Krizus, A., McKenna-Yasek, D., Cayabyab, A., Gaston, S. M., Berger, R., Tanzi, R. E., Halperin, J. J., Herzfeldt, B., Van der Bergh, R., Hung, W. Y., Bird, T., Deng, G., Mulder, D. W., Smyth, C., Laing, N. G., Soriano, E., Pericak-Vance, M. A., Haines, J., Rouleau, G. A., Gusella, J. S., Horovitz, H. R., and Brown, R. H., Jr. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62.

    Google Scholar 

  • Sasaki, M., Brahambhatt, H. P., Dawson, T. M., and Dawson, V. L. (1995). Decrements of intracellular NAD and ATP following exposure of primary neuronal cultures to neurotoxic concentrations. Soc. Neurosci. Abstr. 21:520.

    Google Scholar 

  • Schor, N. F. (1988). Inactivation of mammalian brain glutamine synthetase by oxygen radicals. Brain Res. 456:17–21.

    Google Scholar 

  • Schulz, J. B., Henshaw, D. R., Siwek, D., Jenkins, B. G., Ferrante, R. J., Cipolloni, P. B., Kowall, N. W., Rosen, B. R., and Beal, M. F. (1995). Involyement of free radicals in excitotoxicity in vivo. J. Neurochem. 64:2239–2247.

    Google Scholar 

  • Sofic, E., Riederer, P., Heinsen, H., Beckmann, H., Reynolds, G. P., Hebenstreit, G., and Youdim, M. B. H. (1988). Increased iron (III) and total iron content in post mortem substantia nigra of Parkinson brain. J. Neural Transm. 74:199–205.

    Google Scholar 

  • Sparrow, J. R. (1995). Inducible nitric oxide synthase in the central nervous system. J. Mol. Neurosci. 5:219–229.

    Google Scholar 

  • Sun, A. Y., Cheng, Y., Bu, Q., and Oldfield, F. (1992). The biochemical mechanisms of the excitotoxicity of kainic acid. Mol. Chem. Neuropathol. 17:51–63.

    Google Scholar 

  • Tamura, Y., Sato, Y., Akaike, A., and Shiomi, H. (1992). Mechanisms of cholecystokinin-induced protection of cultured cortical neurons against N-methyl-D-aspartate receptor mediated glutamate toxicity. Brain Res. 592:317–325.

    Google Scholar 

  • Teebor, G. W., Boorstein, R. J., and Cadet J. (1988). The repairability of oxidative free radical mediated damage to DNA. Int. J. Radiat. Biol. 54:131–150.

    Google Scholar 

  • Terada, L. S., Guidot, D. M., Leff, J. A., Willingham, I. R., Hanley, M. E., Piermattei, D., and Repine, J. E. (1991). Hypoxia injures endothelial cells by increasing endogenous xanthine oxidase activity. Proc. Natl. Acad. Sci. USA 89:3362–3366.

    Google Scholar 

  • Terada, L. S., Willingham, I. R., Rosandich, M. E., leff, J. A., Kindt, G. W., and Repine, J. E. (1992). Generation of superoxide anion by brain endothelial xanthine oxidase. J. Cell. Physiol. 148:191–196.

    Google Scholar 

  • Uemura, Y., Kowall, N. W., and Beal, M. F. (1990). Selective sparing of NADPH-diaphorase-somatostatin-neuropeptide Y neurons in ischemic gerbil striatum. Ann. Neurol. 27:620–625.

    Google Scholar 

  • Volterra, A., Trotti, D., Floridi, S., and Racagni, G. (1994). Reactive oxygen species inhibit high-affinity glutamate uptake: Molecular mechanism and neuropathological implications. Ann. N.Y. Acad. Sci. 738:153–162.

    Google Scholar 

  • Wallace, M. N., and Bisland, S. K. (1994). NADPH-diaphorase activity in activated astrocytes represents inducible nitric oxide synthase. Neuroscience 59:905–919.

    Google Scholar 

  • Wallace, M. N., and Fredens, K. (1992). Activated astrocytes of the mouse hippocampus containing high levels of NADPH-diaphorase. Neurochemistry 3:953–956.

    Google Scholar 

  • Wildemann, B., Sasaki, M., Glass, J. D., McArthur, J. C., Christov, V. I., Dawson, T. M., and Dawson, V. L. (1995). Induction of immunologic nitric oxide synthase in AIDS dementia. Soc. Neurosci. Abstr. 21:1520.

    Google Scholar 

  • Wong, P. C., Pardo, C. C., Borchelt, D. R., Lee, M. K., Copeland, N. G., Jenkins, N. A., Sisodia, S. S., Cleveland, D. W., and Price, D. L. (1995). An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneratio of mitochondria. Neuron 14:1105–1116.

    Google Scholar 

  • Yamamoto, M., Takeshi, S., Uozumi, T., Sogabe, T., Yamada, K., and Kawasaky, T. (1983). A possible role of lipid peroxidation in cellular damages caused by cerebral ischemia and the protective effect of a-tocopherol administration. Stroke 14:977–982.

    Google Scholar 

  • Youdim, M. B. H., Ben-Shachar, D., and Riederer, P. (1990). The role of monoamino oxidase, iron-melanin interaction and intracellular calcium in Parkinson's disease. J. Neural Transm. 32(Suppl.):239–248.

    Google Scholar 

  • Yu, B. P. (1994). Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74:139–162.

    Google Scholar 

  • Zhang, F., and Iadecola, C. (1993). Nitroprusside improves blood flow and reduces brain damage after focal ischemia. NeuroReport 4:559–562.

    Google Scholar 

  • Zhang, J., and Snyder, S. H. (1992). Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA 89: 9382–9385.

    Google Scholar 

  • Zhang, J., and Piantadosi, C. A. (1994). Prolonged production of hydroxyl radical in rat hippocampus after brain ischemia-reperfusion is decreased by 21-aminosteroids. Neurosci. Lett. 177:127–130.

    Google Scholar 

  • Zhang, J., Dawson, V. L., Dawson, T. M., and Snyder, S. H. (1994). Nitric oxide activation of poly (ADP-ribose) synthetase in neurotoxicity. Science 263:687–689.

    Google Scholar 

  • Zhang, Z. G., Chopp, M., Gautam, S., Zaloga, C., Zhang, R. L., Schmidt, H. H., Pollock, J. S., and Fostermann U. (1994). Up-regulation of neuronal nitric oxide synthase and mRNA, and selective sparing of nitric oxide synthase-containing neurons after focal cerebral ischemia in rat. Brain Res. 654:85–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facchinetti, F., Dawson, V.L. & Dawson, T.M. Free Radicals as Mediators of Neuronal Injury. Cell Mol Neurobiol 18, 667–682 (1998). https://doi.org/10.1023/A:1020685903186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020685903186

Navigation