Skip to main content
Log in

Dependence of Cartilage Matrix Composition on Biosynthesis, Diffusion, and Reaction

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The steady-state composition of articular cartilage has previously been described as a balance between the metabolism of matrix molecules and the loss of these components from the tissue. Single compartment kinetic models have previously been developed to describe the relationship between these processes and overall (spatially-averaged) concentration of matrix molecules. Here, we develop a continuum model to describe the relationship between spatially-varying matrix concentrations and the processes of matrix formation, binding, degradation, and molecular transport within and from the cartilage tissue. At steady-state, the resultant concentration profile, and also spatially-averaged concentration, are predicted to depend on the balance between diffusivity and binding rate, diffusivity and formation rate, and various rate processes, some of which depend on tissue thickness. The predicted concentration profile, for certain parameter values, exhibits similarities to that known to exist for the proteoglycan matrix component, suggesting that transport factors may play an important role in causing the spatial variation in this component. Under other conditions, the predicted concentration profile may have a large portion of bound components and be relatively constant, consistent with the known distribution of collagen in cartilage. Thus, the continuum model may provide insight into the biophysical mechanism underlying matrix distribution within different regions of articular cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allhands, R. V., Torzilli, P. A. and Kallfelz, F. A.: 1984, Measurement of diffusion of uncharged molecules in articular cartilage, Cornell Vet. 74, 111–123.

    Google Scholar 

  • Arner, E. C., Pratta, M. A., Trzaskos, J. M. et al.: 1999, Generation and characterization of aggrecanase. A soluble, cartilage-derived aggrecan-degrading activity, J. Biol. Chem. 274, 6594–6601.

    Google Scholar 

  • Bhakta, N. R., Garcia, A. M., Frank, E. H. et al.: 2000, The insulin-like growth factors (IGFs) I and II bind to articular cartilage via the IGF-binding proteins, J. Biol. Chem. 275, 5860–5866.

    Google Scholar 

  • Bolis, S., Handley, C. J. and Comper, W. D.: 1989, Passive loss of proteoglycan from articular cartilage explants, Biochim. Biophys. Acta 993, 157–167.

    Google Scholar 

  • Buckwalter, J. A. and Mankin, H. J.: 1997a, Articular cartilage. Part I: tissue design and chondrocytematrix interactions, J. Bone Joint Surg. 79-A, 600–611.

    Google Scholar 

  • Buckwalter, J. A. and Mankin, H. J.: 1997b, Articular cartilage. Part II: degeneration and osteoarthrosis, repair, regeneration, and transplantation, J. Bone Joint Surg. 79-A, 612–632.

    Google Scholar 

  • Campbell, M. A., Handley, C. J., Hascall, V. C. et al.: 1984, Turnover of proteoglycans in cultures of bovine articular cartilage, Arch. Biochem. Biophys. 234, 275–289.

    Google Scholar 

  • Caterson, B., Flannery, C. R., Hughes, C. E. et al.: 2000, Mechanisms involved in cartilage proteoglycan catabolism, Matrix Biol. 19, 333–344.

    Google Scholar 

  • Chen, A. C., Bae, W. C., Schinagl, R. M. et al.: 2001, Depth-and strain-dependent mechanical and electromechanical properties of full-thickness articular cartilage, J. Biomech. 34, 1–12.

    Google Scholar 

  • Comper, W. D. and Williams, R. P.: 1987, Hydrodynamics of concentrated proteoglycan solutions, J. Biol. Chem. 262, 13464–13471.

    Google Scholar 

  • Eisenberg, S. R. and Grodzinsky, A. J.: 1988, Electrokinetic micromodel of extracellular matrix and other polyelectrolyte networks, Physicochem. Hydrodyn. 10, 517–539.

    Google Scholar 

  • Fosang, A. J., Last, K., Knauper, V. et al.: 1996, Degradation of cartilage aggrecan by collagenase-3 (MMP-13), FEBS Lett. 380, 17–20.

    Google Scholar 

  • Fosang, A. J., Last, K., Knauper, V. et al.: 1993, Fibroblast and neutrophil collagenases cleave at two sites in the cartilage aggrecan interglobular domain, Biochem. J. 295, 273–276.

    Google Scholar 

  • Furuto, D. K. and Miller, E. J.: 1987, Isolation and characterization of collagens and procollagens, Meth. Enzymol. 144, 41–139.

    Google Scholar 

  • Garcia, A. M., Black, A. C. and Gray, M. L.: 1994, Effects of physicochemical factors on the growth of mandibular condyles in vitro, Calcif. Tissue Int. 54, 499–504.

    Google Scholar 

  • Garcia, A. M. and Gray, M. L.: 1995, Dimensional growth and extracellular matrix accumulation by neonatal rat mandibular condyles in long-term culture, J. Orthop. Res. 13, 208–219.

    Google Scholar 

  • Garcia, A. M., Lark, M. W., Trippel, S. B. et al.: 1998, Transport of tissue inhibitor of metalloproteinases-1 through cartilage: contributions of fluid flow and electrical migration, J. Orthop. Res. 16, 734–742.

    Google Scholar 

  • Hascall, V. C., Handley, C. J., McQuillan, D. J. et al.: 1983a, The effect of serum on biosynthesis of proteoglycans by bovine articular cartilage in culture, Arch. Biochem. Biophys. 224, 206–223.

    Google Scholar 

  • Hascall, V. C., Luyten, F. P., Plaas, A.H. K. et al.: 1990, Steady-state metabolism of proteoglycans in bovine articular cartilage, In: A. Maroudas and K. Kuettner (eds), Methods in Cartilage Research, Academic Press, San Diego, pp. 108–112.

    Google Scholar 

  • Hascall, V. C., Morales, T. I., Hascall, G. K. et al.: 1983b, Biosynthesis and turnover of proteoglycans in organ culture of bovine articular cartilage, J. Rheumatol. 10S, 45–52.

    Google Scholar 

  • Kahn, A., Pottenger, L. A., Albertini, J. G. et al.: 1994, Chemical stabilization of cartilage matrix, J. Surg. Res. 56, 302–308.

    Google Scholar 

  • Katz, E. P. and Li, S. T.: 1973, The intermolecular space of reconstituted collagen fibrils, J. Mol. Biol. 73, 351–369.

    Google Scholar 

  • Kimura, J. H., Hardingham, T. E. and Hascall, V. C.: 1980, Assembly of newly synthesized proteoglycan and link protein into aggregates in cultures of chondrosarcoma chondrocytes, J. Biol. Chem. 255, 7134–7143.

    Google Scholar 

  • Kimura, J. H., Hardingham, T. E., Hascall, V. C. et al.: 1979, Biosynthesis of proteoglycans and their assembly into aggregates in cultures of chondrocytes from the swarm rat chondrosarcoma, J. Biol. Chem. 254, 2600–2609.

    Google Scholar 

  • Lai, W. M., Hou, J. S. and Mow, V. C.: 1991, A triphasic theory for the swelling and deformation behaviors of articular cartilage, J. Biomech. Engng 113, 245–258.

    Google Scholar 

  • Lai, W. M., Mow, V. C. and Roth, V.: 1981, Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage, J. Biomech. Engng 103, 61–66.

    Google Scholar 

  • Mak, A. F.: 1986, Unconfined compression of hydrated viscoelastic tissues: a biphasic poroviscoelastic analysis, Biorheology 23, 371–383.

    Google Scholar 

  • Mansour, J. M. and Mow, V. C.: 1976, The permeability of articular cartilage under compressive strain and at high pressures, J. Bone Joint Surg. 58-A, 509–516.

    Google Scholar 

  • Maroudas, A.: 1979, Physico-chemical properties of articular cartilage, In: M. A. R. Freeman (ed.), Adult Articular Cartilage, Pitman Medical, Tunbridge Wells, England, pp.215–290.

    Google Scholar 

  • Maroudas, A., Bayliss, M., Uchitel-Kaushansky, N. et al.: 1998, Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age, Arch. Biochem. Biophys. 350, 61–71.

    Google Scholar 

  • Maroudas, A., Wachtel, E., Grushko, G. et al.: 1991, The effect of osmotic and mechanical pressures on water partitioning in articular cartilage, Biochim. Biophys. Acta 1073, 285–294.

    Google Scholar 

  • Morales, T. I. and Hascall, V. C.: 1989, Factors involved in the regulation of proteoglycan metabolism in articular cartilage, Arthritis Rheum. 32, 1197–1201.

    Google Scholar 

  • Mow, V. C. and Ratcliffe, A.: 1997, Structure and function of articular cartilage and meniscus, In: V. C. Mow and W. C. Hayes (eds), Basic Orthopaedic Biomechanics, Raven Press, New York, pp. 113–178.

    Google Scholar 

  • Mow, V. C., Ratcliffe, A. and Poole, A. R.: 1992, Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures, Biomaterials 13, 67–97.

    Google Scholar 

  • O'Hara, B. P., Urban, J. P. G. and Maroudas, A.: 1990, Influence of cyclic loading on the nutrition of articular cartilage, Ann. Rheum. Dis. 49, 536–539.

    Google Scholar 

  • Pal, S., Tang, L.-H., Choi, H. et al.: 1981, Structural changes during development in bovine fetal epiphyseal cartilage, Collagen Rel. Res. 1, 151–176.

    Google Scholar 

  • Pottenger, L. A., Webb, J. E. and Lyon, N. B.:1985, Kinetics of extraction of proteoglycans from human cartilage, Arthritis Rheum. 28, 323–330.

    Google Scholar 

  • Ratcliffe, A. and Mow, V. C.: 1996, Articular cartilage, In:W. D. Comper (ed.), Extracellular Matrix, Overseas Publishers Association, Amsterdam, pp. 143–198.

    Google Scholar 

  • Sah, R. L., Chen, A. C., Chen, S. S. et al.: 2001, Articular cartilage repair, In W. J. Koopman (ed.), Arthritis and Allied Conditions. A Textbook of Rheumatology, Lippincott Williams & Wilkins, Philadelphia, pp. 2264–2278.

    Google Scholar 

  • Sah, R. L., Chen, A. C., Grodzinsky, A. J. et al.: 1994, Differential effects of IGF-I and bFGF on matrix metabolism in calf and adult bovine cartilage explants, Arch. Biochem. Biophys. 308, 137–147.

    Google Scholar 

  • Sah, R. L., Doong, J. Y. H., Grodzinsky, A. J. et al.: 1991, Effects of compression on the loss of newly synthesized proteoglycans and proteins from cartilage explants, Arch. Biochem. Biophys. 286, 20–29.

    Google Scholar 

  • Sah, R. L., Kim, Y. J., Doong, J. H. et al.: 1989, Biosynthetic response of cartilage explants to dynamic compression, J. Orthop. Res. 7, 619–636.

    Google Scholar 

  • Sajdera, S.W. and Hascall, V. C.: 1969, Proteinpolysaccharide complex from bovine nasal cartilage. A comparison of low and high shear extraction procedures, J. Biol. Chem. 244, 77–87.

    Google Scholar 

  • Sandy, J. and Verscharen, C.: 2001, Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover of whole aggrecan whereas MMP-like activity is required primarily for C-terminal processing of the molecule, Biochem. J. (in press).

  • Sandy, J. D., O'Neill, J. R. and Ratzlaff, L. C.: 1989, Acquisition of hyaluronate-binding affinity in vivo by newly synthesized cartilage proteoglycans, Biochem. J. 258, 875–880.

    Google Scholar 

  • Sandy, J. D. and Plaas, A. H. K.: 1986, Age-related changes in the kinetics of release of proteoglycans from normal rabbit cartilage explants, J. Orthop. Res. 4, 263–272.

    Google Scholar 

  • Sandy, J. D., Plaas, A. H. K. and Rosenberg, L.: 1997, Structure, function and metabolism of cartilage proteoglycans, In: W. J. Koopman (ed.), Arthritis and Allied Conditions, Williams and Wilkins, Baltimore, pp. 229–242.

    Google Scholar 

  • Schinagl, R. M., Gurskis, D., Chen, A. C. et al.: 1997, Depth-dependent confined compression modulus of full-thickness bovine articular cartilage, J. Orthop. Res. 15, 499–506.

    Google Scholar 

  • Schneiderman, R., Snir, E., Popper, O. et al.: 1995, Insulin-like growth factor-I and its complexes in normal human articular cartilage: studies of partition and diffusion, Arch. Biochem. Biophys. 324, 159–172.

    Google Scholar 

  • Shapiro, F., Koido, S. and Glimcher, M. J.: 1993, Cell origin and differentiation in the repair of full-thickness defects of articular cartilage, J. Bone Joint Surg. 75-A, 532–553.

    Google Scholar 

  • Thonar, E. J.-M. and Sweet, M. B. E.: 1981, Maturation-related changes in proteoglycans of fetal articular cartilage, Arch. Biochem. Biophys. 208, 535–547.

    Google Scholar 

  • Torzilli, P. A., Adams, T. C. and Mis, R. J.: 1987, Transient solute diffusion in articular cartilage, J. Biomech. 20, 203–214.

    Google Scholar 

  • Torzilli, P. A., Arduino, J. M., Gregory, J. D. et al.: 1997, Effect of proteoglycan removal on solute mobility in articular cartilage, J. Biomech. 30, 895–902.

    Google Scholar 

  • Wachtel, E., Maroudas, A. and Schneiderman, R.: 1995, Age-related changes in collagen packing of human articular cartilage, Biochim. Biophys. Acta 1243, 239–243.

    Google Scholar 

  • Williamson, A.W., Chen, A. C. and Sah, R. L.: 2001, Compressive properties and structure-function relationships of developing bovine articular cartilage, J. Orthop. Res. 19, 1113–1121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiMicco, M.A., Sah, R.L. Dependence of Cartilage Matrix Composition on Biosynthesis, Diffusion, and Reaction. Transport in Porous Media 50, 57–73 (2003). https://doi.org/10.1023/A:1020677829069

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020677829069

Navigation