Skip to main content
Log in

Cα chemical shift tensors in helical peptides by dipolar-modulated chemical shift recoupling NMR

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The Cα chemical shift tensors of proteins contain information on the backbone conformation. We have determined the magnitude and orientation of the Cα chemical shift tensors of two peptides with α-helical torsion angles: the Ala residue in G*AL (φ=−65.7°, ψ=−40°), and the Val residue in GG*V (φ=−81.5°, ψ=−50.7°). The magnitude of the tensors was determined from quasi-static powder patterns recoupled under magic-angle spinning, while the orientation of the tensors was extracted from Cα–Hα and Cα–N dipolar modulated powder patterns. The helical Ala Cα chemical shift tensor has a span of 36 ppm and an asymmetry parameter of 0.89. Its σ11 axis is 116° ± 5° from the Cα–Hα bond while the σ22 axis is 40° ± 5° from the Cα–N bond. The Val tensor has an anisotropic span of 25 ppm and an asymmetry parameter of 0.33, both much smaller than the values for β-sheet Val found recently (Yao and Hong, 2002). The Val σ33 axis is tilted by 115° ± 5° from the Cα–Hα bond and 98° ± 5° from the Cα–N bond. These represent the first completely experimentally determined Cα chemical shift tensors of helical peptides. Using an icosahedral representation, we compared the experimental chemical shift tensors with quantum chemical calculations and found overall good agreement. These solid-state chemical shift tensors confirm the observation from cross-correlated relaxation experiments that the projection of the Cα chemical shift tensor onto the Cα–Hα bond is much smaller in α-helices than in β-sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alderman, D.W., Sherwood, M.H. and Grant, D.M. (1993) J. Magn. Reson., A101, 188–197.

    Google Scholar 

  • Bennett, A.E., Rienstra, C.M., Auger, M., Lakshmi, K.V. and Griffin, R.G. (1995) J. Chem. Phys., 103, 6951–6958.

    Google Scholar 

  • Bower, P.V., Oyler, N., Mehta, M.A., Long, J.R., Stayton, P.S. and Drobny, G.P. (1999) J. Am. Chem. Soc., 121, 8373–8375.

    Google Scholar 

  • Carroll, P.J., Stewart, P.L. and Opella, S.J. (1990) Acta Cryst., C46, 243–246.

    Google Scholar 

  • Chaturvedi, S., Go, K. and Parthasarathy, R. (1991) Biopolymers, 31, 397–407.

    Google Scholar 

  • Costa, P.R., Gross, J.D., Hong, M. and Griffin, R.G. (1997) Chem. Phys. Lett., 280, 95–103.

    Google Scholar 

  • Dixon, W.T. (1982) J. Chem. Phys., 77, 1800–1809.

    Google Scholar 

  • Duncan, T.M. (1997) Chemical Shift Tensors, 2nd edn, Farragut Press, Madison, Wisconsin.

    Google Scholar 

  • Feng, X., Eden, M., Brinkmann, A., Luthman, H., Eriksson, L., Graslund, A., Antzutkin, O.N. and Levitt, M.H. (1997) J. Am. Chem. Soc., 119, 12006–12007.

    Google Scholar 

  • Harris, R.K. and Oliveri, A.C. (1992) Prog. NMR Spectrosc., 24, 435–456.

    Google Scholar 

  • Hartzell, C.J., Pratum, T.K. and Drobny, G. (1987) J. Chem. Phys., 87, 4324–4331.

    Google Scholar 

  • Hartzell, C.J., Whitfeld, M., Oas, T.G. and Drobny, G.P. (1987) J. Am. Chem. Soc., 109, 5966–5969.

    Google Scholar 

  • Havlin, R.H., Laws, D.D., Bitter, H.L., Sanders, L.K., Sun, H., Grimley, J.S., Wemmer, D.E., Pines, A. and Oldfield, E. (2001) J. Am. Chem. Soc., 123, 10362–10369.

    Google Scholar 

  • Havlin, R.H., Le, H., Laws, D.D., deDios, A.C. and Oldfield, E. (1997) J. Am. Chem. Soc., 119, 11951–11958.

    Google Scholar 

  • Hong, M. (2000) J. Am. Chem. Soc., 122, 3762–3770.

    Google Scholar 

  • Hong, M., Gross, J.D. and Griffin, R.G. (1997) J. Phys. Chem., B101, 5869–5874.

    Google Scholar 

  • Jameson, A.K. and Jameson, C.J. (1987) Chem. Phys. Lett., 134, 461–466.

    Google Scholar 

  • Jameson, C.J. (1998) Solid State NMR, 11, 265–268.

    Google Scholar 

  • Lalitha, V., Subramanian, E. and Bordner, J. (1984) Int. J. Pept. Protein Res., 24, 437–441.

    Google Scholar 

  • Liu, S.F., Mao, J.D. and Schmidt-Rohr, K. (2002) J. Magn. Reson., 155, 15–28.

    Google Scholar 

  • Oldfield, E. (1995) J. Biomol. NMR, 5, 217–225.

    Google Scholar 

  • Schmidt-Rohr, K. and Spiess, H.W. (1994) Multidimensional Solid-State NMR and Polymers, Academic Press, San Diego, California.

    Google Scholar 

  • Sitkoff, D. and Case, D.A. (1998) Prog. NMR Spectrosc., 32, 165–190.

    Google Scholar 

  • Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490–5492.

    Google Scholar 

  • Sun, H., Sanders, L.K. and Oldfield, E. (2002) J. Am. Chem. Soc., submitted.

  • Tjandra, N. and Bax, A. (1997) J. Am. Chem. Soc., 119, 9576–9577.

    Google Scholar 

  • Tycko, R., Dabbagh, G. and Mirau, P. (1989) J. Magn. Reson., 85, 265–274.

    Google Scholar 

  • Walling, A.E., Pargas, R.E. and deDios, A.C. (1997) J. Phys. Chem., A101, 7299–7303.

    Google Scholar 

  • Weliky, D. and Tycko, R. (1996) J. Am. Chem. Soc., 118, 8487–8488.

    Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222,311–333.

    Google Scholar 

  • Yao, X.L. and Hong, M. (2002) J. Am. Chem. Soc., 124, 2730–2738.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, X., Yamaguchi, S. & Hong, M. Cα chemical shift tensors in helical peptides by dipolar-modulated chemical shift recoupling NMR. J Biomol NMR 24, 51–62 (2002). https://doi.org/10.1023/A:1020626802472

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020626802472

Navigation