Skip to main content
Log in

Effect of Synthesis Temperature on the Ferroelectric Properties of Ceramics Based on Lead Zirconate Titanate and Alkali Niobates

  • Published:
Inorganic Materials Aims and scope

Abstract

Ferroelectric piezoceramics based on lead zirconate titanate (PZT) and alkali niobates were prepared by solid-state reactions followed by hot pressing, and their properties were studied. The results demonstrate that the ceramics can be divided into two groups, according to the effect of synthesis temperature on their electrical properties. In one group (ceramics based on PZT and sodium potassium niobate), the range of optimal synthesis temperatures is as broad as ≃200°C, and the properties vary insignificantly across this range. In the other group (ceramics based on lithium niobate and sodium lithium niobate), the properties show sharp extrema within a narrow range of synthesis temperatures (≃20°C). These findings are interpreted in terms of the cation composition of the materials. The obtained data can be used to optimize conditions for the preparation of various ferroelectric piezoceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Jaffe, B., Cook, W.R., and Jaffe, H., Piezoelectric Ceramics, London: Academic, 1971. Translated under the title P'ezoelektricheskaya keramika, Moscow: Mir, 1974.

    Google Scholar 

  2. Gavrilyachenko, S.V., Reznichenko, L.A., Rybyanets, A.N., and Gavrilyachenko, V.G., P'ezokeramika dlya chastotnoselektivnykh ustroistv (Piezoelectric Ceramics for Frequency-Selective Devices), Rostov-on-Don: Rostov. Gos. Politekhnicheskii Univ., 1999.

    Google Scholar 

  3. Okazaki, K., Tekhnologiya keramicheskikh dielektrikov (Ceramic Engineering for Dielectrics), M.: Energiya, 1976 (translated from Japanese).

  4. Panich, A.E. and Kupriyanov, M.F., Fizika i tekhnologiya segnetokeramiki (Physics and Technology of Ferroelectric Ceramics), Rostov-on-Don: Rostov. Gos. Univ., 1989.

    Google Scholar 

  5. Fesenko, E.G., Komarov, V.D., Dantsiger, A.Ya., et al. Effect of Hot-Pressing Conditions on the Properties of PZT-23 Ceramics, Materialy III mezhotraslevogo soveshchaniya po metodam polucheniya i analiza ferritovykh, segneto-i p'ezoelektricheskikh materialov i syr'ya dlya nikh (Proc. III Interdisciplinary Conf. on the Techniques for Preparation and Characterization of Ferrites, Ferroelectrics, Piezoelectrics, and Related Raw Materials), Donetsk, 1970, pp. 170–176.

  6. Klevtsov, A.N., Morphotropic Regions in Quaternary Lead Oxide Perovskite Systems, Cand. Sci. (Phys.– Math.) Dissertation, Rostov-on-Don: Rostov State Univ., 1971.

    Google Scholar 

  7. Fesenko, E.G., Dantsiger, A.Ya., and Razumovskaya, O.N., Novye p'ezokeramicheskie materialy (New Piezoelectric Ceramics), Rostov-on-Don: Rostov. Gos. Univ., 1983.

    Google Scholar 

  8. Dantsiger, A.Ya., Razumovskaya, O.N., Reznichenko, L.A., and Dudkina, S.I., Vysokoeffektivnye p'ezokeramicheskie materialy. Optimizatsiya poiska (High-Performance Piezoelectric Ceramics: Optimized Approaches), Rostov-on-Don: Paik, 1995.

    Google Scholar 

  9. Dantsiger, A.Ya., Razumovskaya, O.N., Reznichenko, L.A., et al., Vysokoeffektivnye p'ezokeramicheskie materialy. Spravochnik (High-Performance Piezoelectric Ceramics: A Handbook), Rostov-on-Don: Kniga, 1994.

    Google Scholar 

  10. Reznichenko, L.A., Chernyshkov, V.A., Komarov, V.D., et al., Grain Growth and Sintering of Lithium Metaniobate Ceramics, Izv. Akad. Nauk SSSR, Neorg. Mater., 1988, vol. 24, no. 9, pp. 1559–1565.

    Google Scholar 

  11. Reznichenko, L.A., Aleshin, V.A., Chernyshkov, V.A., et al., Recrystallization Effects on the Mechanical Strength of Various Ferroelectric Ceramics, Poluprovodn.– Segnetoelektr., 1994, no. 5, pp. 123–126.

    Google Scholar 

  12. Reznichenko, L.A., Klevtsov, A.N., Razumovskaya, O.N., et al., Secondary Discontinuous Recrystallization as a Manifestation of Self-organization in Niobate Ferroelectric Ceramics, 8 Mezhdunarodnyi seminar po fizike segnetoelektrikov– poluprovodnikov (IMES-8) i 1 Rostovskii mezhdunarodnyi seminar po vysokotemperaturnoi sverkhprovodimosti (IMHTS-1) (8th Int. Seminar on the Physics of Ferroelectric Semiconductors, IMES-8, and 1st Rostov Int. Seminar on High-Temperature Superconductivity, IMHTS-1), Rostov-on-Don, 1998, pp. 159–166.

  13. Reznitchenko, L.A., Alyoshin, V.A., Klevtsov, A.N., et al., Secondary Discontinuous Recrystallization as Manifestation of the Effect of Self-organization in Niobate Ferroelectric Ceramics, Ferroelectrics, 2000, vol. 247, nos. 1–3, pp. 95–105.

    Google Scholar 

  14. Kovalenko, M.I., Goncharov, E.Yu., Aleshin, V.A., et al., Computer Simulation of Secondary Discontinuous Recrystallization in Niobate Ferroelectric Ceramics, Trudy 2 Rostovskogo mezhdunarodnogo seminara po vysokotemperaturnoi sverkhprovodimosti (IMHTS-2R) (Proc. 2nd Rostov Int. Seminar on High-Temperature Superconductivity, IMHTS-2R), Rostov-on-Don, 2000, pp. 95–100.

  15. Bondarenko, E.I., Komarov, V.D., Reznichenko, L.A., and Chernyshkov, V.A., Self-destruction of Ferroelectric Ceramics, Zh. Tekh. Fiz., 1988, vol. 58, no. 9, pp. 1771–1774.

    Google Scholar 

  16. Bondarenko, E.I., Chernyshkov, V.A., and Reznichenko L.A., Mechanism for Self-destruction of High-Temperature Polycrystalline Ferroelectrics, P'ezoelektr. Mater. Preobr., 1991, vol. 1, no. 9, pp. 56–60.

    Google Scholar 

  17. Reznichenko, L.A., Razumovskaya, O.N., Chernyshkov, V.A., et al., Sintering of Lithium Metaniobate Powder, Izv. Akad. Nauk SSSR, Neorg. Mater., 1988, vol. 24, no. 4, pp. 661–666.

    Google Scholar 

  18. Reznichenko, L.A., Razumovskaya, O.N., and Klevtsov, A.N., Fabricability of Manganese-Containing Ferroelectric Piezoceramics, Trudy mezhdunarodnoi nauchno-prakticheskoi konferentsii "P'ezotekhnika-99" (Proc. P'ezotekhnika-95 Int. Conf.), Rostov-on-Don, 1999, pp. 268–275.

  19. Fesenko, E.G., Semeistvo perovskita i segnetoelektrichestvo (Perovskite Family and Ferroelectricity), Moscow: Atomizdat, 1972.

    Google Scholar 

  20. Saltykov, S.M., Stereometricheskaya metallografiya (Stereometric Metallography), Moscow: Nauka, 1970, 3rd rev. ed.

    Google Scholar 

  21. Reznichenko, L.A., Razumovskaya, O.N., Ivanova, L.S., and Shilkina, L.A., The Dependence of Niobate Piezoceramic Characteristics on the Dispersity of Nb2O5 of Different Grades, Neorg. Mater., 1993, vol. 29, no. 7, pp. 1004–1007 [Inorg. Mater. (Engl. Transl.), vol. 29, no. 7, pp. 884–887].

    Google Scholar 

  22. Reznichenko, L.A., Shilkina, L.A., Titov, S.V., et al., Defect Ordering and Annihilation via Rearrangement of Coordination Polyhedra in Various Niobium Oxides, Trudy mezhdunarodnogo simpoziuma po uporyadocheniyu v mineralakh i splavakh (OMA-2000) (Proc. Int. Symp. on Ordering in Minerals and Alloys, OMA-2000), Rostov-on-Don, 2000, pp. 111–126.

  23. Rao, C.N.R. and Gopalakrishnan, J., New Directions in Solid State Chemistry: Structure, Synthesis, Properties, Reactivity, and Materials Design, Cambridge: Cambridge Univ. Press, 1986. Translated under the title Novye napravleniya v khimii tverdogo tela, Novosibirsk: Nauka, 1990

    Google Scholar 

  24. Petrenko, A.G. and Prisedskii, V.V., Defekty struktury v segnetoelektrikakh (Structural Defects in Ferroelectrics), Kiev: Uchebno-Metodicheskii Kabinet po Vysshemu Obrazovaniyu pri Minvuze USSR, 1989.

    Google Scholar 

  25. Tret'yakov, Yu.D., Tverdofaznye reaktsii (Solid-Phase Reactions), Moscow: Khimiya, 1978.

    Google Scholar 

  26. Tret'yakov, Yu.D., Khimiya nestekhiometricheskikh okislov (Chemistry of Nonstoichiometric Oxides), Moscow: Mosk. Gos. Univ., 1974.

    Google Scholar 

  27. Reznichenko, L.A., Razumovskaya, O.N., Shilkina, L.A., and Aleshin, V.A., Liquid Phase in Alkali Niobates, Materialy 7 mezhdunarodnogo seminara po fizike segnetoelektrikov– poluprovodnikov (Proc. 7th Int. Seminar on the Physics of Ferroelectric Semiconductors), Rostovon-Don, 1996, no. 6, pp. 149–151.

    Google Scholar 

  28. Kuz'minov, Yu.S., Elektoopticheskii i nelineinoopticheskii kristall niobata litiya (Lithium Niobate: Electrooptic and Nonlinear Optical Crystal), Moscow: Nauka, 1987

    Google Scholar 

  29. Schirmer, O.F., Thiemann, O., and Wohlecke, M., Defects in LiNbO3: I. Experimental Aspects, J. Phys. Chem. Solids, 1991, vol. 52, no. 1, pp. 185–200.

    Google Scholar 

  30. Dzhumabaev, S., Effects of OH NO3– and Impurities on the Accumulation of Electronic Color Centers in Sodium Chloride and Potassium Chloride Crystals, in Vliyanie defektov reshetki na svoistva kristallov (Effect of Lattice Defects on Properties of Crystals), Frunze: Ilim, 1971.

    Google Scholar 

  31. Zharikov, E.V., Ivleva, L.I., Kuz'minov, Yu.S., and Osiko, V.V., Effect of Hydroxyl Groups on the Dielectric and Optical Properties of Alkaline-Earth Niobate Crystals, Izv. Akad. Nauk SSSR, Neorg. Mater., 1975, vol. 11, no. 5, pp. 875–879.

    Google Scholar 

  32. Sakharov, V.V., Ivanova, M.E., Korovin, S.S., and Zakharov, M.A., Topochemical Preparation of Niobium and Tantalum Hydroxides from various Compounds, Zh. Neorg. Khim., 1974, vol. 19, no. 3, pp. 579–584.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reznichenko, L.A., Razumovskaya, O.N., Shilkina, L.A. et al. Effect of Synthesis Temperature on the Ferroelectric Properties of Ceramics Based on Lead Zirconate Titanate and Alkali Niobates. Inorganic Materials 38, 1069–1084 (2002). https://doi.org/10.1023/A:1020545825587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020545825587

Keywords

Navigation