Skip to main content
Log in

Temperature-insensitive electrical performance of the potassium sodium niobate-based ceramics modified by barium zirconate

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of barium zirconate modified potassium sodium niobate-based lead-free piezoelectric ceramics [(0.97-x)(K0.45Na0.55)(Nb0.97Sb0.03)O3-0.03Bi0.5K0.075Na0.425ZrO3-xBaZrO3, KNNS–BKNZ–xBZ, x = 0 ~ 0.02] were prepared by the traditional solid-state method. The effect of BZ on the phase structure and electrical properties was systematically studied. Rhombohedral–orthorhombic–tetragonal multiphase coexistence structure can be observed for the whole ceramic system while the addition of BZ leads to the reduction in the orthorhombic phase content and increase in the rhombohedral and tetragonal phase content. At the critical composition with x = 0.01, the ceramics show the optimized electrical properties with the piezoelectric constant d33 of 265 pC/N, unipolar strain Suni of 0.168%, inverse piezoelectric coefficient d33* of 480 pm/V, room-temperature dielectric constant εr of 1634, and Curie temperature TC of 282 °C. Moreover, enhanced temperature stability was achieved in the x = 0.01 ceramics, presenting the variation of d33 less than 15% within the temperature range of 20–100 °C and the Suni remained above 80% until the elevated temperature of 175 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The authors confirm that the data generated or analyzed during this study are included in this article and the raw data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Matsubara M, Yamaguchi T, Kikuta K, Hirano S (2005) Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Jpn J Appl Phys 44(1A):258–263

    Article  CAS  Google Scholar 

  2. Panda PK, Sahoo B (2015) PZT to lead free piezo ceramics: a review. Ferroelectrics 474(1):128–143

    Article  CAS  Google Scholar 

  3. Roedel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35(6):1659–1681

    Article  CAS  Google Scholar 

  4. Shrout TR, Zhang S (2007) Lead-free piezoelectric ceramics: Alternatives for PZT? J Electroceram 19(1):113–126

    Article  Google Scholar 

  5. Shen Z-H, Liu H-X, Shen Y, Hu J-M, Chen L-Q, Nan C-W (2022) Machine learning in energy storage materials. Interdiscip Mater 1(2):175–195

  6. Zheng P, Zhang J, Tan Y, Wang C (2012) Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics. Acta Mater 60(13–14):5022–5030

    Article  CAS  Google Scholar 

  7. Sapkota P, Ueno S, Fujii I, Khanal GP, Kim S, Wada S (2019) Influence of grain size effect and Ba/Ti ratios on dielectric, ferroelectric, and piezoelectric properties of BaTiO3 ceramics. Jpn J Appl Phys 58(SL):SLLC05

    Article  CAS  Google Scholar 

  8. Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103(25):257602

    Article  Google Scholar 

  9. Zhao C, Wu H, Li F, Cai Y, Zhang Y, Song D, Jiagang W, Lyu X, Yin J, Xiao D, Zhu J, Pennycook Stephen J (2018) Practical high piezoelectricity in barium titanate ceramics utilizing multiphase convergence with broad structural flexibility. J Am Chem Soc 140(45):15252–15260

    Article  CAS  Google Scholar 

  10. Zhou X, Jiang C, Luo H, Chen C, Zhou K, Zhang D (2016) Enhanced piezoresponse and electric field induced relaxor-ferroelectric phase transition in NBT-0.06BT ceramic prepared from hydrothermally synthesized nanoparticles. Ceram Int 42(16):18631–18640

    Article  CAS  Google Scholar 

  11. Yin J, Tao H, Zhang Y, Han J, Huang Y, Li Z, Zhang X, Wu J (2020) Advances in tuning the “d33 ∝ 1/Td” bottleneck: simultaneously realizing large d33 and high Td in Bi0.5Na0.5TiO3-based relaxor ferroelectrics. J Mater Chem A 8(18):9209–9217

    Article  CAS  Google Scholar 

  12. Luo H, Liu H, Deng S, Shuxian Hu, Wang Lu, Gao B, Sun S, Ren Y, Qiao L, Chen J (2021) Simultaneously enhancing piezoelectric performance and thermal depolarization in lead-free (Bi, Na)TiO3–BaTiO3 via introducing oxygen-defect perovskites. Acta Mater 208:116711

    Article  CAS  Google Scholar 

  13. Tellier J, Malic B, Dkhil B, Jenko D, Cilensek J, Kosec M (2009) Crystal structure and phase transitions of sodium potassium niobate perovskites. Solid State Sci 11(2):320–324

    Article  CAS  Google Scholar 

  14. Roedel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177

    Article  CAS  Google Scholar 

  15. Guo Y, Kakimoto K, Ohsato H (2004) Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl Phys Lett 85(18):4121–4123

    Article  CAS  Google Scholar 

  16. Guo Y, Kakimoto K, Ohsato H (2005) (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater Lett 59(2–3):241–244

    Article  CAS  Google Scholar 

  17. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432(7013):84–87

    Article  CAS  Google Scholar 

  18. Lv X, Zhu J, Xiao D, Zhang X-X, Wu J (2020) Emerging new phase boundary in potassium sodium-niobate based ceramics. Chem Soc Rev 49(3):671–707

    Article  CAS  Google Scholar 

  19. Kuscer D, Kocjan A, Majcen M, Meden A, Radan K, Kovac J, Malic B (2019) Evolution of phase composition and microstructure of sodium potassium niobate -based ceramic during pressure-less spark plasma sintering and post-annealing. Ceram Int 45(8):10429–10437

    Article  CAS  Google Scholar 

  20. Malic B, Koruza J, Hrescak J, Bernard J, Wang K, Fisher JG, Bencan A (2015) Sintering of lead-free piezoelectric sodium potassium niobate ceramics. Materials 8(12):8117–8146

    Article  CAS  Google Scholar 

  21. Wang X, Wu J, Xiao D, Zhu J, Cheng X, Zheng T, Zhang B, Lou X, Wang X (2014) Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J Am Chem Soc 136(7):2905–2910

    Article  CAS  Google Scholar 

  22. Xu K, Li J, Lv X, Wu J, Zhang XX, Xiao D, Zhu J (2016) Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv Mater 28(38):8519–8852

    Article  CAS  Google Scholar 

  23. Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lyu X, Zhao C, Xiao D, Zhu J, Pennycook SJ (2019) Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J Am Chem Soc 141(35):13987–13994

    Article  CAS  Google Scholar 

  24. Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X (2018) Ultrahigh piezoelectric properties in textured (K, Na)NbO3 -based lead-free ceramics. Adv Mater 30(8):1705171

    Article  Google Scholar 

  25. Wang K, Yao F, Jo W, Gobeljic D, Shvartsman VV, Lupascu DC, Li J, Roedel J (2013) Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 23(33):4079–4086

    Article  CAS  Google Scholar 

  26. Lv X, Wu J, Zhang XX (2020) Reduced degree of phase coexistence in KNN-based ceramics by competing additives. J Eur Ceram Soc 40(8):2945–2953

    Article  CAS  Google Scholar 

  27. Li P, Fu Z, Wang F, Huan Y, Zhou Z, Zhai J, Shen B, Zhang S (2020) High piezoelectricity and stable output in BaHfO3 and (Bi0.5Na0.5)ZrO3 modified (K0.5Na0.5)(Nb0.96Sb0.04)O3 textured ceramics. Acta Mater 199:542–550

    Article  CAS  Google Scholar 

  28. Lv X, Wu J, Zhang XX (2020) A new concept to enhance piezoelectricity and temperature stability in KNN ceramics. Chem Eng J 402:126215

    Article  CAS  Google Scholar 

  29. Zhang H, Zhu Y, Fan P, Marwat MA, Ma W, Liu K, Liu H, Xie B, Wang K, Koruza J (2018) Temperature-insensitive electric-field-induced strain and enhanced piezoelectric properties of <001> textured (K,Na)NbO3-based lead-free piezoceramics. Acta Mater 156:389–398

    Article  CAS  Google Scholar 

  30. Zheng T, Wu J (2020) Electric field compensation effect driven strain temperature stability enhancement in potassium sodium niobate ceramics. Acta Mater 182:1–9

    Article  CAS  Google Scholar 

  31. Zheng T, Yu Y, Lei H, Li F, Zhang S, Zhu J, Wu J (2022) Compositionally graded KNN-based multilayer composite with excellent piezoelectric temperature stability. Adv Mater 34(8):2109175

    Article  CAS  Google Scholar 

  32. Yao F, Wang K, Jo W, Webber KG, Comyn TP, Ding J-X, Xu B, Cheng L, Zheng M, Hou Y, Li J (2016) Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv Funct Mater 26(8):1217–1224

    Article  CAS  Google Scholar 

  33. Batra K, Sinha N, Kumar B (2020) Lead-free 0.95(K0.6Na0.4)NbO3-0.05(Bi0.5Na0.5)ZrO3 ceramic for high temperature dielectric, ferroelectric and piezoelectric applications. J Alloys Compd 818:152

    Article  Google Scholar 

  34. Yang W, Wang Y, Li P, Wu S, Wang F, Shen B, Zhai J (2020) Improving electromechanical properties in KNANS-BNZ ceramics by the synergy between phase structure modification and grain orientation. J Mater Chem C 8(18):6149–6158

    Article  CAS  Google Scholar 

  35. Zhou T, Zheng D, Peng G, Peng Z, Zhang N (2018) Effects of (Bi0.5Na0.5)ZrO3 addition on relaxation behavior and electrical properties of the KNN-LS ceramics. J Mater Sci-Mater Electron 29(2):1131–1138

    Article  CAS  Google Scholar 

  36. Zhou C, Zhang J, Yao W, Wang X, Liu D, Sun X (2018) Piezoelectric performance, phase transitions, and domain structure of 0.96(K0.48Na0.52)(Nb0.96Sb0.04)O3–0.04(Bi0.50Na0.50)ZrO3 ceramics. J Appl Phys 124(16):164101

    Article  Google Scholar 

  37. Qian S, Zhu K, Pang X, Liu J, Qiu J, Du J (2014) Phase transition, microstructure, and dielectric properties of Li/Ta/Sb co-doped (K, Na)NbO3 lead-free ceramics. Ceram Int 40(3):4389–4394

    Article  CAS  Google Scholar 

  38. Yang ZP, Chang YF, Wei LL (2007) Phase transitional behavior and electrical properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96xTaxSb0.04)O3 piezoelectric ceramics. Appl Phys Lett 90(4):042911

    Article  Google Scholar 

  39. Liu Q, Li J, Zhao L, Zhang Y, Gao J, Sun W, Wang K, Li L (2018) Niobate-based lead-free piezoceramics: a diffused phase transition boundary leading to temperature-insensitive high piezoelectric voltage coefficients. J Mater Chem C 6(5):1116–1125

    Article  CAS  Google Scholar 

  40. Trainer M (2000) Ferroelectrics and the Curie–Weiss law. Eur J Phys 21(5):459

    Article  CAS  Google Scholar 

  41. Catalan G, Seidel J, Ramesh R, Scott JF (2012) Domain wall nanoelectronics. Rev Mod Phys 84(1):119–156

    Article  CAS  Google Scholar 

  42. Sun X, Li R, Zhao C, Lv X, Wu J (2021) One simple approach, two remarkable enhancements: Manipulating defect dipoles and local stress of (K, Na)NbO3-based ceramics. Acta Mater 221:117351

    Article  CAS  Google Scholar 

  43. Li F, Cabral MJ, Xu B, Cheng Z, Dickey EC, LeBeau JM, Wang J, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L-Q, Shrout TR, Zhang S (2019) Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. Science 364(6437):264–268

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFB3807404); National Natural Science Foundation of China (Grant No. 52172134). The authors would like to acknowledge the financial support from State Key Laboratory of Powder Metallurgy.

Author information

Authors and Affiliations

Authors

Contributions

ZD contributed to the writing—original draft, methodology, investigation, and formal analysis; XZ was involved in the writing—review and editing; YZ assisted in the writing—review and editing, supervision, project administration, and funding acquisition; DZ contributed to the project administration and funding acquisition.

Corresponding authors

Correspondence to Xuefan Zhou, Yan Zhang or Dou Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Peiyao Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Zhou, X., Zhang, Y. et al. Temperature-insensitive electrical performance of the potassium sodium niobate-based ceramics modified by barium zirconate. J Mater Sci 59, 950–963 (2024). https://doi.org/10.1007/s10853-023-09270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09270-0

Navigation