Skip to main content
Log in

A Nanosecond Time-Resolved Fluorescence Study of Recombinant Human Myelin Basic Protein

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Myelin basic protein (MBP) is a major component of myelin and plays a central role in the maintenance of its compact multilayered structure. Tryptophan fluorescence is sensitive to environmental factors such as polarity and rotational mobility and often reflects conformational changes in proteins. This work describes a detailed examination of the time-resolved emission properties of the single tryptophan of recombinant human myelin basic protein. Fluorescence decay curves were collected at two separate excitation wavelengths and at different wavelengths across the emission spectrum. The fitting parameters obtained with the aid of global analysis were combined with steady-state emission spectra collected from the same samples and are presented as decay-associated spectra (DAS) and time-resolved emission spectra (TRES). The effects of temperature and binding to anionic membranes on the decay of emission of MBP were investigated. The changes in fitted parameters and the appearance of DAS and TRES as a function of experimental conditions are interpreted in terms of variation in the local environment of the single tryptophan in MBP. The implications of the changes in local environment resulting from experimental treatments are discussed in the context of the overall conformation of MBP and are compared to structural and photophysical properties of MBP obtained from the central nervous system tissue of several species [P. Cavatorta, S. Giovanelli, A. Bobba, P. Riccio, and E. Quagliariello, Acta Neurol. (Napoli) 13, 162–169, (1991; P. Cavatorta, S. Giovanelli, A. Bobba, P. Riccio, A. G. Szabo, and E. Quagliarello, Biophys. J. 66, 1174–1179, 1994; P. Cavatorta, L. Masotti, A. G. Szabo, D. Juretic, P. Riccio, and E. Quagliariello, Cell Biophys. 13, 201–215, 1988].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Martini and M. Schachner (1997) Glia 19, 298–310.

    Google Scholar 

  2. H. Inouye and D. A. Kirschner (1988) Biophys. J. 53, 247–260.

    Google Scholar 

  3. H. Inouye and D. A. Kirschner (1988) Biophys. J. 53, 235–245.

    Google Scholar 

  4. R. P. Rand, N. L. Fuller, and L. J. Lis (1979) Nature 279, 258–260.

    Google Scholar 

  5. S. Sriram and M. Rodriguez (1997) Neurology 48, 464–470.

    Google Scholar 

  6. P. Stinissen, J. Raus, and J. Zhang (1997) Crit. Rev. Immunol. 17, 33–75.

    Google Scholar 

  7. C. M. Deber, D. W. Hughes, P. E. Fraser, A. B. Pawagi, and M. A. Moscarello (1986) Arch. Biochem. Biophys. 245, 455–463.

    Google Scholar 

  8. M. A. Moscarello, G. W. Brady, D. B. Fein, D. D. Wood, and T. F. Cruz (1986) J. Neurosci. Res. 15, 87–99.

    Google Scholar 

  9. E. Barbarese, C. Barry, C. H. Chou, D. J. Goldstein, G. A. Nakos, R. Hyde-DeRuyscher, K. Scheld, and J. H. Carson (1988) J. Neurochem. 51, 1737–1745.

    Google Scholar 

  10. F. X. Omlin, H. D. Webster, C. G. Palkovits, and S. R. Cohen (1982) J. Cell Biol. 95, 242–248.

    Google Scholar 

  11. R. Smith (1992) J. Neurochem. 59, 1589–1608.

    Google Scholar 

  12. M. B. Sankaram, P. J. Brophy, and D. Marsh (1989) Biochemistry 28, 9685–9691.

    Google Scholar 

  13. R. E. Martenson, G. E. Deibler, and M. W. Kies (1969) J. Biol. Chem. 244, 4268–4272.

    Google Scholar 

  14. G. E. Deibler, R. E. Martenson, and M. W. Kies (1972) Prep. Biochem. 2, 139–165.

    Google Scholar 

  15. H. F. Oettinger, A. Al-Sabbagh, Z. Jingwu, J. M. LaSalle, H. L. Weiner, and D. A. Hafler (1993) J. Neuroimmunol. 44, 157–162.

    Google Scholar 

  16. A. Gow and R. Smith (1989) Biochem. J. 257, 535–540.

    Google Scholar 

  17. W. K. Surewicz, M. A. Moscarello, and H. H. Mantsch (1987) Biochemistry 26, 3881–3886.

    Google Scholar 

  18. M. A. Keniry and R. Smith (1979) Biochim. Biophys. Acta 578, 381–391.

    Google Scholar 

  19. R. Zand, M. X. Li, X. Jin, and D. Lubman (1998) Biochemistry 37, 2441–2449.

    Google Scholar 

  20. J. M. Boggs, P. M. Yip, G. Rangaraj, and E. Jo (1997) Biochemistry 36, 5065–5071.

    Google Scholar 

  21. E. Jo and J. M. Boggs (1995) Biochemistry 34, 13705–13716.

    Google Scholar 

  22. T. Pali, B. Ebert, and L. I. Horvath (1987) Biochim. Biophys. Acta 904, 346–352.

    Google Scholar 

  23. A. J. Steck, H. P. Siegrist, P. Zahler, and N. N. Herschkowitz (1976) Biochim. Biophys. Acta 455, 343–352.

    Google Scholar 

  24. C. S. Randall and R. Zand (1985) Biochemistry 24, 1998–2004.

    Google Scholar 

  25. B. H. Stuart (1996) Biochem. Mol. Biol. Int. 38, 839–845.

    Google Scholar 

  26. P. Cavatorta, S. Giovanelli, A. Bobba, P. Riccio, A. G. Szabo, and E. Quagliariello (1994) Biophys. J. 66, 1174–1179.

    Google Scholar 

  27. P. G. Wu, K. G. Rice, L. Brand, and Y. C. Lee (1991) Proc. Natl. Acad. Sci. USA 88, 9355–9359.

    Google Scholar 

  28. A. Grinvald and I. Z. Steinberg (1974) Anal. Biochem. 59, 583–598.

    Google Scholar 

  29. J. M. Beechem, E. Gratton, M. Ameloot, J. R. Knutson, and L. Brand, in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy: Principles, Vol. 2, Plenum Press, New York and London, p. 241.

  30. J. H. Easter, R. P. DeToma, and L. Brand (1976) Biophys. J. 16, 571–583.

    Google Scholar 

  31. W. R. Ware, S. K. Lee, G. J. Brant, and P. P. Chow (1971) J. Chem. Phys. 54, 4729.

    Google Scholar 

  32. C. Nicot, M. Vacher, M. Vincent, J. Gallay, and M. Waks (1985) Biochemistry 24, 7024–7032.

    Google Scholar 

  33. A. P. Demchenko and A. S. Ladokhin (1988) Eur. Biophys. J. 15, 369–379.

    Google Scholar 

  34. P. R. Callis and B. K. Burgess (1997) J. Phys. Chem. B 101, 9429–9432.

    Google Scholar 

  35. B. Hudson (1999) Acc. Chem. Res. 32, 297–300.

    Google Scholar 

  36. J. R. Lakowicz and A. Balter (1982) Photochem. Photobiol. 36, 125–132.

    Google Scholar 

  37. J. R. Lakowicz and H. Cherek (1980) J. Biol. Chem. 255, 831–834.

    Google Scholar 

  38. A. Chattopadhyay and R. Rukmini (1993) FEBS Lett. 335, 341–344.

    Google Scholar 

  39. Y. Chen and M. D. Barkley (1998) Biochemistry 37, 9976–9982.

    Google Scholar 

  40. R. F. Chen, J. R. Knutson, H. Ziffer, and D. Porter (1991) Biochemistry 30, 5184–5195.

    Google Scholar 

  41. C. Royer (1993) Biophys. J. 65, 9–10.

    Google Scholar 

  42. A. G. Szabo and D. M. Rayner (1980) J. Am. Chem. Soc. 102, 554–563.

    Google Scholar 

  43. J. W. Petrich, M. C. Chang, D. B. McDonald, and G. R. Fleming (1983) J. Am. Chem. Soc. 105, 3824–3832.

    Google Scholar 

  44. N. D. J. Silva and F. G. Prendergast (1996) Biophys. J. 70, 1122–1137.

    Google Scholar 

  45. A. J. Jones and M. G. Rumsby (1975) J. Neurochem. 25, 565–572.

    Google Scholar 

  46. S. J. Morris, D. Bradley, A. T. Champagnoni, and G. L. Stoner (1987) Biochemistry 26, 2175–2182.

    Google Scholar 

  47. M. W. Nowak and H. A. Berman (1991) Biochemistry 30, 7642–7651.

    Google Scholar 

  48. P. Cavatorta, L. Masotti, A. G. Szabo, D. Juretic, P. Riccio, and E. Quagliariello (1988) Cell Biophys. 13, 201–215.

    Google Scholar 

  49. J. Sedzik and D. A. Kirschner (1992) Neurochem. Res. 17, 157–166.

    Google Scholar 

  50. E. C. J. Alvord, S. Hruby, R. E. Martenson, G. E. Deibler, and M. J. Law (1986) J. Neurochem. 47, 764–771.

    Google Scholar 

  51. R. A. Ridsdale, D. R. Beniac, T. A. Tompkins, M. A. Moscarello, and G. Harauz (1997) J. Biol. Chem. 272, 4269–4275.

    Google Scholar 

  52. C. Nicot, M. Vacher, L. Denoroy, P. C. Kahn, and M. Waks (1993) J. Neurochem. 60, 1283–1291.

    Google Scholar 

  53. M. Roux, F. A. Nezil, M. Monck, and M. Bloom (1994) Biochemistry 33, 307–311.

    Google Scholar 

  54. P. E. Fraser, R. P. Rand, and C. M. Deber (1989) Biochim. Biophys. Acta 983, 23–29.

    Google Scholar 

  55. J. M. Boggs, L. S. Chia, R. Rangaraj, and M. A. Moscarello (1986) Chem. Phys. Lipids 39, 165–184.

    Google Scholar 

  56. G. L. Mendz, W. J. Moore, L. R. Brown, and R. E. Martenson (1984) Biochemistry 23, 6041–6046.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russo, A.T., Brand, L. A Nanosecond Time-Resolved Fluorescence Study of Recombinant Human Myelin Basic Protein. Journal of Fluorescence 9, 333–342 (1999). https://doi.org/10.1023/A:1020540125166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020540125166

Navigation