Skip to main content
Log in

Oxidation Behavior of a PVD-Processed Mg–10.6Zr Alloy

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior in air of a physical vapor-deposited (PVD) Mg–10.6Zr (wt. %) alloy was studied in the 325–450°C temperature range. The oxidation rate of this alloy remains low at temperatures below 375°C. However, at higher temperatures, the alloy experienced extremely high oxidation rates, which can even lead to disintegration of the sample. Oxidation is controlled by fast inward oxygen transport along the “open boundaries” of the alloy, leading to the formation of cracks throughout the sample, and subsequent formation of a thin MgO at crack interfaces. The MgO layer remains protective while coarsening of zirconium precipitates at the open boundaries does not take place. Thickening of Zr precipitates over a critical size induces impairment of the MgO layer at crack interfaces, facilitating inward oxygen diffusion. The volume increase resulting from the formation of new oxide at open boundaries favors decohesion of open boundaries, leading to accelerated oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Sommer, F. Hehmann, H. Jones, and R. G. Edyvean, J. Mater. Sci. 24, 2369 (1989).

    Google Scholar 

  2. S. Krishnamurthy, K. Khobaid, E. Robertson, and F. H. Froes, Mater. Sci. Eng. 99, 507 (1988).

    Google Scholar 

  3. F. Sommer, F. Hehmann, and H. Jones, J. Less-Common Met. 159, 237 (1990).

    Google Scholar 

  4. D. S. Ahmed, R. G. Edyvean, C. M. Sellars, and H. Jones, Mater. Sci. Technol. 6, 469 (1990).

    Google Scholar 

  5. S. B. Dodd and R. W. Gardiner, in Proceedings of the Third International Magnesium Conference, G. W. Lorimer, ed., April 10–12 (Manchester, UK, 1996), UK, p. 271.

  6. S. B. Dodd, S. Morris, and R. W. Gardiner, in Proceedings of the Conference Magnesium Alloys and their Applications, B. L. Mordike and K. U. Kainer, eds., April 28–30 (Wolfsburg, Germany, 1998), p. 375.

  7. S. Diplas, P. Tsakiropoulos, and R. M. D. Bridson, Mater. Sci. Technol. 14, 689 (1998).

    Google Scholar 

  8. C. B. Baliga, P. Tsakiropoulos, S. B. Dodd, and R. W. Gardiner, in Proceedings of the Third International Magnesium Conference, G. W. Lorimer, ed., April 10–12 (Manchester, U.K., 1996), p. 629.

  9. S. Diplas, P. Tsakiropoulos, and R. M. D. Bridson, Mater. Sci. Technol. 15, 1349 (1999).

    Google Scholar 

  10. E. A. Gulbransen, Trans. Electrochem. Soc. 87, 589 (1945).

    Google Scholar 

  11. T. E. Leontis and F. H. Rhines, Trans. AIME 166, 265 (1946).

    Google Scholar 

  12. M. L. Boussion, L. Grall, and R. Caillat, Rev. Metall. 3, 185 (1957).

    Google Scholar 

  13. J. E. Castle, S. J. Gregg, and W. B. Jepson, J. Electrochem. Soc. 109, 1018 (1962).

    Google Scholar 

  14. B. S. You, W. W. Park, and I. S. Chung, Scripta Mater. 42, 1089 (2000).

    Google Scholar 

  15. B. A. Kolachev, R. M. Gabidullin, and Y. V. Piguzov, in Tecnologia de tratamiento térmico de metales y aleaciones no férreos, Mir, ed. (Moscow, Russia, 1983), pp. 149–150.

  16. M. Avedesian and H. Baker, American Society for Metals Specialty Handbook (ASM International, Materials Park, OH, 1999), p. 199.

    Google Scholar 

  17. G. Garcés and P. Adeva, Philos. Mag. A 82, 699 (2002).

    Google Scholar 

  18. G. Garcés, M. C. Cristina, M. Torralba, and P. Adeva, J. Alloys Comp. 309, 229 (2000).

    Google Scholar 

  19. J. C. Doychack, in Intermetallics Compounds, Principles and Practice, Vol. 1, Chap. 43, J. H. Westbrook and R. L. Fleischer, eds. (Wiley, Chichester, UK, 1995), p. 977.

    Google Scholar 

  20. H. J. Grabke and G. H. Meier, Oxid. Met. 44, 147 (1995).

    Google Scholar 

  21. B. A. Movchan and A. V. Demchishin, Phys. Metal. Metallogr. 28, 83 (1969).

    Google Scholar 

  22. J. A. Thornton, Rev. Mater. Sci. 7, 239 (1977).

    Google Scholar 

  23. P. Kofstad, in High Temperature Corrosion (Elsevier Appl. Sci., London, 1998), pp. 289–298.

    Google Scholar 

  24. G. Garcés, J. M. Antonaz, P. Pérez, J. M. Badia, and P. Adeva, Intern. J. Non Equilib. Pr., submitted.

  25. H. Mehrer, Diffusion Solids Metals Alloys 26, 93 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, P., Garcés, G. & Adeva, P. Oxidation Behavior of a PVD-Processed Mg–10.6Zr Alloy. Oxidation of Metals 58, 607–621 (2002). https://doi.org/10.1023/A:1020533324873

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020533324873

Navigation