Skip to main content
Log in

Oxide Scale Development in a Ni-16 Cr-4.5 Al Alloy for Short Exposure Times

  • Corrosion and Protection of Materials at High Temperatures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nickel-base alloys are used in high-temperature applications due to their favorable mechanical properties and oxidation behavior. Some of these alloys are designed to form a protective aluminum oxide scale to achieve oxidation resistance. In some oxidizing environments, water vapor is also present. However, only limited data are available regarding the effects of water vapor on the oxidation behavior of alumina-forming alloys (“alumina formers”), especially for early stage oxidation. Moreover, the currently available mechanisms for dry oxidation of alumina formers propose different pathways leading up to the final morphology of the oxide scale. In this study, the early oxidation behavior of an alumina former (UNS N07214) in dry and humid air was conducted at 1000°C for different exposure times (1 min to 100 h). Detailed examination of the surface of this alloy reveals that an alumina film is initially (1–10 min) formed in both dry and humid conditions. For longer exposure times (1–10 h), this initial alumina film is disrupted by the formation of chromia and nickel oxide/nickel chromite islands in both cases. Subsequently, for 100 h exposures, a continuous alumina scale is re-established. A mechanism to explain the observed phenomena is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.M. Pollock, and S. Tin, J. Propul. Power 22, 361. (2006).

    Article  Google Scholar 

  2. G.W. Meetham, J. Mater. Sci. 26, 853. (1991).

    Article  Google Scholar 

  3. S.R.J. Saunders, M. Monteiro, and F. Rizzo, Prog. Mater. Sci. 53, 775. (2008).

    Article  Google Scholar 

  4. M.C. Maris-Sida, G.H. Meier, and F.S. Pettit, Metall. Mater. Trans. A 34A, 2609. (2003).

    Article  Google Scholar 

  5. C.S. Giggins, and F.S. Pettit, J. Electrochem. Soc. 118, 1782. (1971).

    Article  Google Scholar 

  6. T.J. Nijdam, L.P.H. Jeurgens, and W.G. Sloof, Acta Mater. 53, 1643. (2005).

    Article  Google Scholar 

  7. L. Hu, D.B. Hovis, and A.H. Heuer, Oxid. Met. 73, 275. (2010).

    Article  Google Scholar 

  8. N. Ury, A. Wagner, E. Quach, A. Gutierrez, V. Deodeshmukh and V. Ravi, Corrosion 2019, Paper No. C2019-13520 (Houston, TX: NACE, 2019)

  9. E. Opila, J. A. Lorincz, J. J. Demange, Proc. Electrochem. Soc., 67 (2004).

  10. X.J. Zhang, S.Y. Wang, F. Gesmundo, and Y. Niu, Oxid. Met. 65, 151. (2006).

    Article  Google Scholar 

  11. J. Jedlinski, Defect Diffus. Forum 289, 385. (2009).

    Article  Google Scholar 

  12. F.H. Stott, G.C. Wood, and M.G. Hobby, Oxid. Met. 3, 103. (1971).

    Article  Google Scholar 

  13. W.E. Boggs, J. Electrochem Soc. 118, 906. (1971).

    Article  Google Scholar 

  14. K.M.N. Prasanna, A.S. Khanna, R. Chandra, and W.J. Quadakkers, Oxid. Met. 46, 465. (1996).

    Article  Google Scholar 

  15. J.L. Gonzalez Carrasco, P. Adeva, and M. Aballe, Oxid. Met. 33, 1. (1990).

    Article  Google Scholar 

  16. X. Yang, X. Peng, and F. Wang, Corros. Sci. 50, 3227. (2008).

    Article  Google Scholar 

  17. S. Hayashi, S. Narita, and T. Narita, Oxid. Met. 74, 33. (2010).

    Article  Google Scholar 

  18. P. Berthod, L. Aranda, S. Mathieu, and M. Vilasi, Oxid. Met. 79, 517. (2013).

    Article  Google Scholar 

  19. E. Opila, Mater. Sci. Forum 765, 461. (2004).

    Google Scholar 

  20. B. Chattopadhyay, and G.C. Wood, Oxid. Met. 2, 373. (1970).

    Article  Google Scholar 

  21. G. Zhou, Appl. Phys. Lett. 94, 1. (2009).

    Google Scholar 

  22. J.G. Goedjen, and D.A. Shores, Oxid. Met. 37, 125. (1992).

    Article  Google Scholar 

  23. F.A. Golightly, G.C. Wood, and F.H. Stott, Oxid. Met. 14, 217. (1980).

    Article  Google Scholar 

  24. D. Li, J. Alloys Compd. 692, 427. (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge technical assistance from Kentaro Lunn, Harjot Singh, Eric Quach, Ananda Gutierrez, Ulus Ekerman, Joey Tulpinski, and Anan S. Hamdan (Cal Poly Pomona). The authors gratefully acknowledge financial support from Ms. Sylvia Hall, the LA section of NACE International Western States Corrosion Seminar, Western Area of NACE International, the NACE Foundation, California Steel Industries Inc., the Boeing Company, Chevron Corporation and the Southern California Chapter of the Association for Iron & Steel Technology. The SEM images and EDS analysis were made possible through an NSF MRI grant DMR-1429674.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilupanur Ravi.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6883 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ury, N., Wagner, A., Deodeshmukh, V. et al. Oxide Scale Development in a Ni-16 Cr-4.5 Al Alloy for Short Exposure Times. JOM 73, 3974–3987 (2021). https://doi.org/10.1007/s11837-021-04967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04967-6

Navigation