Skip to main content
Log in

Effect of NiAl Microcrystalline Coating on the High-Temperature Oxidation Behavior of NiAl–28Cr–5Mo–1Hf

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effect of an NiAl microcrystalline coating prepared by magnetron sputtering on the high-temperature oxidation behavior of NiAl–28Cr–5Mo–1Hf was investigated in static air at 1000–1150°C. The additions of Cr, Mo, and Hf changed the single β-phase structure into a multiphase structure [β-NiAl, α-Cr(Mo), and Heusler phase]. The NiAl–28Cr–5Mo–1Hf alloy formed a nonprotective mixed scale of Al2O3+Cr2O3+HfO2 and exhibited relatively large weight gains. The large weight gains were attributed to extensive internal oxidation. The sputtered NiAl microcrystalline coating remarkably improved the oxidation resistance of NiAl–28Cr–5Mo–1Hf due to the formation of a compact and adherent Al2O3 scale at all test temperatures. It was found that the θ-α-Al2O3 transformation caused the anomalous behavior of the oxidation–kinetics curves of the NiAl microcrystalline coating in the temperature range 1000–1150°C. A change in the morphology of scales occurred with the transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Darolia, JOM 43, 44 (1991).

    Google Scholar 

  2. D. Miracle, Acta Metall. Mater. 41, 649 (1993).

    Google Scholar 

  3. R. D. Noebe, R. R. Bowman, and N. V. Nathal, Intern. Mater. Rev. 38, 193 (1993).

    Google Scholar 

  4. R. R. Bowman, A. K. Misra, and S. M. Arnold, Metall. Trans. 26A, 615 (1995).

    Google Scholar 

  5. C. Y. Liu, S. M. Jeng, J.-M. Yang, and R. A. Amato, Mater. Sci. Eng. A191, 49 (1995).

    Google Scholar 

  6. H. P. Chiu, J.-M. Yang, and R. A. Amato, Mater. Sci. Eng. A203, 81 (1995).

    Google Scholar 

  7. H. E. Cline and J. L. Walter, Metall. Trans. 1, 2907 (1970).

    Google Scholar 

  8. H. E. Cline, J. L. Walter, E. Lifshin, and R. R. Russell, Metall. Trans. 2, 189 (1971).

    Google Scholar 

  9. J.-M. Yang, S. M. Jeng, K. Bain, and R. A. Amato, Acta Metall. Mater. 45, 295 (1997).

    Google Scholar 

  10. D. R. Johnson, X. F. Chen, B. F. Oliver, R. D. Noebe, and J. D. Whittenberger, Intermetallics 3, 99 (1995).

    Google Scholar 

  11. D. R. Johnson, X. F. Chen, B. F. Oliver, R. D. Noebe, and J. D. Whittenberger, Intermetallics 3, 141 (1995).

    Google Scholar 

  12. D. R. Johnson, B. F. Oliver, R. D. Noebe, and J. D. Whittenberger, Intermetallics 3, 493 (1995).

    Google Scholar 

  13. J. D. Whittenberger, I. E. Locci, R. Darolia, and R. R. Bowman, Mater. Sci. Eng. A268, 165 (1999).

    Google Scholar 

  14. R. Darolia and W. S. Walston, in Structural Intermetallics, 1997, M. V. Nathal, R. Darolia, C. T. Liu, P. L. Martin, D. B. Miracle, R. Wagner, and M. Yamaguchi, eds. (The Minerals, Metal and Materials Society, Pennington, NJ., 1997), p. 585.

    Google Scholar 

  15. C. Y. Cui and J. T. Guo, Acta. Metall. Sinica 35, 477 (1999).

    Google Scholar 

  16. C. Y. Cui, Y. X. Chen, J. T. Guo, D. X. Li, and H. Q. Ye, Mater. Lett. 43, 303 (2000).

    Google Scholar 

  17. J. T. Guo, C. Y. Cui, Y. X. Chen, D. X. Li, and H. Q. Ye, Intermetallics 9, 1287 (2001).

    Google Scholar 

  18. C. M. Xu, J. T. Guo, and F. B. Yang, Acta. Metall. Sinica 37, 857 (2001).

    Google Scholar 

  19. F. H. Wang and H. Y. Lou, Mater. Sci. Eng. A129, 279 (1990).

    Google Scholar 

  20. H. Y. Lou, F. H. Wang, B. J. Xia, and L. X. Zhang, Oxid. Met. 38, 299 (1992).

    Google Scholar 

  21. Z. L. Tang, F. H. Wang, and W. T. Wu, Oxid. Met. 48, 511 (1997).

    Google Scholar 

  22. S. L. Yang and F. H. Wang, Acta. Metall. Sinica 36, 985 (2000).

    Google Scholar 

  23. S. L. Yang, F. H. Wang, W. T. Wu, and Y. Niu, Oxid. Met. 56, 33 (2001).

    Google Scholar 

  24. T. F. An, H. R. Guan, X. F. Sun, and Z. Q. Hu, Oxid. Met. 54, 301 (2000).

    Google Scholar 

  25. B. Gleeson, W. H. Cheung, and D. J. Young, Corros. Sci. 35, 923 (1993).

    Google Scholar 

  26. D. Prajitno, B. Gleeson, and D. J. Young, Corros. Sci. 39, 639 (1997).

    Google Scholar 

  27. M. A. Phillips and B. Gleeson, Oxid. Met. 50, 399 (1998).

    Google Scholar 

  28. D. P. Whittle and J. Stringer, Phil. Trans. Royal Soc., London Ser. A 295, 309 (1980).

    Google Scholar 

  29. G. C. Ryicki and J. L. Smialek, Oxid. Met. 31, 275 (1989).

    Google Scholar 

  30. M. W. Brumm and H. J. Grabke, Corros. Sci. 33, 1677 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J.T., Xu, C.M. Effect of NiAl Microcrystalline Coating on the High-Temperature Oxidation Behavior of NiAl–28Cr–5Mo–1Hf. Oxidation of Metals 58, 457–468 (2002). https://doi.org/10.1023/A:1020516921239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020516921239

Navigation