Skip to main content
Log in

Oxidative Reforming of Bio-Ethanol Over CuNiZnAl Mixed Oxide Catalysts for Hydrogen Production

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hydrogen (H2) is expected to become an important fuel for the future to be used as an energy carrier in automobiles and electric power plants. A promising route for H2 production involves catalytic reforming of a suitable primary fuel such as methanol or ethanol. Since ethanol is a renewable raw material and can be cheaply produced by the fermentation of biomass, the ethanol reforming for H2 production is beneficial to the environment. In the present study, the steam reforming of ethanol in the presence of added O2, which in the present study is referred to as oxidative steam reforming of ethanol (OSRE), was performed for the first time over a series of CuNiZnAl mixed oxide catalysts derived from layered double hydroxide (LDH) precursors. The effects of Cu/Ni ratio, temperature, O2/ethanol ratio, contact time, CO co-feed and substitution of Cu/Ni by Co were investigated systematically in order to understand the influence of these parameters on the catalytic performance. An ethanol conversion close to 100% was noticed at 300 °C over all the catalysts. The Cu-rich catalysts favor the dehydrogenation of ethanol to acetaldehyde. The addition of Ni was found to favor the C–C bond rupture, producing CO, CO2 and CH4. Depending upon the reaction condition, a H2 yield between 2.5 and 3.5 moles per mole of ethanol converted was obtained. A CoNi-based catalyst exhibited better catalytic performance with lower selectivity of undesirable byproducts, namely CH3CHO, CH4 and CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Song, Am. Chem. Soc. Fuel Chem. Division Preprint 46 (2001) 8.

    Google Scholar 

  2. L.F. Brown, Int. J. Hydrogen Energy 26 (2001) 381.

    Google Scholar 

  3. J. Rostrup-Nielson, Phys. Chem. Chem. Phys. 3 (2001) 283.

    Google Scholar 

  4. W.-H. Cheng, Acc. Chem. Res. 32 (1999) 685.

    Google Scholar 

  5. J.P. Breen and J.R.H. Ross, Catal. Today 51 (1999) 521.

    Google Scholar 

  6. L. Alejo, R. Lago, M.A. Peña and J.L.G. Fierro, Appl. Catal. A: General 162 (1997) 281.

    Google Scholar 

  7. S. Velu, K. Suzuki, M. Okazaki, M.P. Kapoor, T. Osaki and F. Ohashi, J. Catal. 194 (2000).

  8. S. Velu, K. Suzuki, M.P. Kapoor, F. Ohashi and T. Osaki, Appl. Catal. A: General 213 (2001) 47.

    Google Scholar 

  9. S. Velu, K. Suzuki and T. Osaki, Catal. Lett. 69 (2000) 43.

    Google Scholar 

  10. T.L. Reitz, P.L. Lee, K.F. Czaplewski, J.C. Lang, K.E. Popp and H.H. Kung, J. Catal. 199 (2001) 193.

    Google Scholar 

  11. S. Murcia-Mascaros, R.M. Navarro, L. Gomez-Sainero, U. Costantino, M. Nocchetti and J.L.G. Fierro, J. Catal. 198 (2001) 338.

    Google Scholar 

  12. Biofuels, DOE/GO 10099, 736 (1999).

  13. F. Marino, M. Jobbagy, G. Baronetti and M. Loborde, Stud. Surf. Sci. Catal. 130 (2000) 2147.

    Google Scholar 

  14. F. Marino, M. Boveri, G. Baronetti and M. Loborde, Int. J. Hydrogen Energy 26 (2001) 665.

    Google Scholar 

  15. F. Haga, T. Nakajima, H. Miya and S. Mishima, Catal. Lett. 48 (1997) 223.

    Google Scholar 

  16. K. Vasudeva, N. Mitra, P. Umasanker and S.C. Dhingra, Int. J. Hydrogen Energy 21 (1996) 13.

    Google Scholar 

  17. I. Fishtik, A. Alexander, R. Datta and D. Geana, Int. J. Hydrogen Energy 25 (2000) 31.

    Google Scholar 

  18. A. Yee, S.J. Morrison and H. Idriss, J. Catal. 186 (1999) 279.

    Google Scholar 

  19. F. Cavani, F. Trifiro and A. Vaccari, Catal. Today 11 (1991) 173.

    Google Scholar 

  20. A. Alejandre, F. Medina, X. Rodriguez, P. Salagre and J.E. Sueiras, Stud. Surf. Sci. Catal. 130 (2000) 1763.

    Google Scholar 

  21. A. Monzon, E. Romeo, C. Roya, R. Trujillano, F.M. Labajos and V. Rives, Appl. Catal. A: General 185 (1999) 53.

    Google Scholar 

  22. S. Velu, K. Suzuki, S. Hashimoto, N. Satoh and S. Tomura, J. Mater. Chem. 11 (2001) 2049.

    Google Scholar 

  23. S. Velu, K. Suzuki, M.P. Kapoor, S. Tomura, F. Ohashi and T. Osaki, Chem. Mater. 12 (2000) 719.

    Google Scholar 

  24. N. Iwasa and Takezawa, Bull. Chem. Soc. Jpn. 64 (1991) 2619.

    Google Scholar 

  25. Y. Liu and D. Liu, Int. J. Hydrogen Energy 24 (1999) 351.

    Google Scholar 

  26. M. Agnelli and C. Mirodatos, J. Catal. 192 (2000) 204.

    Google Scholar 

  27. A.N. Fatsikostas, D.I. Kondarides and X.E. Verykios, Chem. Commun. (2001), 851.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velu, S., Satoh, N., Gopinath, C.S. et al. Oxidative Reforming of Bio-Ethanol Over CuNiZnAl Mixed Oxide Catalysts for Hydrogen Production. Catalysis Letters 82, 145–152 (2002). https://doi.org/10.1023/A:1020516830768

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020516830768

Navigation