Skip to main content
Log in

New insights into the fatty acid-binding protein (FABP) family in the small intestine

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The fatty acid-binding protein (FABP) superfamily is constituted by 14–15 kDa soluble proteins which bind with a high affinity either long-chain fatty acids (LCFAs), bile acids (BAs) or retinoids. In the small intestine, three different FABP isoforms exhibiting a high affinity for LCFAs and/or BAs are expressed: the intestinal and the liver-type (I-FABP and L-FABP) and the ileal bile acid-binding protein (I-BABP). Despite of extensive investigations, their respective physiological function(s) are not clearly established. In contrast to the I-FABP, L-FABP and I-BABP share several common structural features (shape, size and volume of the hydrophobic pocket). Moreover, L-FABP and I-BABP genes are also specifically regulated by their respective preferential ligands through a very similar molecular mechanism. Although, they exhibit differences in their binding specificities and location along the small intestine supporting a specialization, it is likely that L-FABP and I-BABP genes exert the same type of basic function(s) in the enterocyte, in contrast to I-FABP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mangroo D, Trigatti BL, Gerber GE: Membrane permeation and intracellular trafficking of long-chain fatty acids: Insights from Escherichia coli and 3T3-L1 adipocytes. Biochem Cell Biol 73: 223–234, 1995

    Google Scholar 

  2. Berk PD: How do long-chain free fatty acids cross cell membrane? Proc Soc Exp Biol Med 212: 1–4, 1996

    Google Scholar 

  3. Fitscher BA, Elsing C, Riedel HD, Gorski J, Stremmel W: Protein-mediated facilitated uptake processes for fatty acids, bilirubin, and other amphipathic compounds. Proc Soc Exp Biol Med 212: 15–23, 1996

    Google Scholar 

  4. Zakim D: Fatty acids enter cells by simple diffusion. Proc Soc Exp Biol Med 212: 5–14, 1996

    Google Scholar 

  5. Glatz JFC, Luiken JJFP, van Nieuwenhoven FA, van der Vusse GJ: Molecular mechanism of cellular uptake and intracellular translocation of fatty acids. Prost Leuk Essent Fatty Acids 57: 3–9, 1997

    Google Scholar 

  6. Abumrad N, Harmon C, Ibrahimi A: Membrane transport of longchain fatty acids: Evidence for a facilated process. J Lipid Res 39: 2309–2318, 1998

    Google Scholar 

  7. Hamilton JA: Fatty acid transport: Difficult or easy? J Lipid Res 39: 467–481, 1998

    Google Scholar 

  8. McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F: Cellular uptake and intracellular trafficking of longchain fatty acids. J Lipid Res 40: 1371–1383, 1999

    Google Scholar 

  9. Besnard P, Niot I: Role of lipid-binding proteins in intestinal absorption of long-chain fatty acid. In: A.B. Christophe, S. De Vriese (eds). Fat Digestion and Absorption. AOCS Press, Champaign, IL, USA, 2000, pp 96–118

    Google Scholar 

  10. Kramer W, Girbig F, Gutjahr U, Kowalewski S, Jouvenal K, Müller G, Tripier D, Wess G: Intestinal bile acid absorption. Na+-dependent bile acid transport activity in rabbit small intestine correlates with the coexpression of an integral 93-kDa and a peripheral 14-kDa bile acid-binding membrane protein along the duodenum-ileum axis. J Biol Chem 268: 18035–18046, 1993

    Google Scholar 

  11. Veerkamp JH, Maatman RGHJ: Cytoplasmic fatty acid-binding proteins: Their structures and genes. Prog Lipids Res 34: 17–52, 1995

    Google Scholar 

  12. Inokuchi A, Hinoshita E, Iwamoto Y, Kohno K, Kuwano M, Uchiumi T: Enhanced expression of the human multidrug resistance protein 3 by bile salt in human enterocytes: A transcriptional control of a plausible bile acid transporter. J Biol Chem 4: 4, 2001

    Google Scholar 

  13. Weinberg SL, Burckhardt G, Wilson FA: Taurocholate transport by rat intestinal basolateral membrane vesicles. J Clin Invest 78: 44–50, 1996

    Google Scholar 

  14. Abe T, Kakyo M, Sakagami H, Tokui T, Nishio T, Tanemoto M, Nomura H, Hebert SC, Matsuno S, Kondo H, Yawo H: Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with oatp2. J Biol Chem 273: 22395–22401, 1998

    Google Scholar 

  15. Russell DW, Setchell KD: Bile acid biosynthesis. Biochemistry 31: 4737–4749, 1992

    Google Scholar 

  16. Poirier H, Niot I, Degrace P, Monnot MC, Bernard A, Besnard P: Fatty acid regulation of fatty acid-binding proteins expression in the small intestine. Am J Physiol 273: G289–G295, 1997

    Google Scholar 

  17. Richieri GV, Ogata RT, Kleinfeld AM: Kinetics of fatty acid interactions with fatty acid-binding proteins from adipocyte, heart and intestine. J Biol Chem 271: 11291–11300, 1996

    Google Scholar 

  18. Sacchettini JC, Scapin G, Gopaul D, Gordon JI: Refinement of the structure of Escherichia coli-derived rat intestinal fatty acid binding protein with bound oleate to 1.75 A resolution. J Biol Chem 267: 23534–23545, 1992

    Google Scholar 

  19. Fujita M, Fujii H, Kanda T, Sato E, Hatakeyama K, Ono T: Molecular cloning, expression, and characterization of a human intestinal 15-kDa protein. Eur J Biochem 233: 406–413, 1995

    Google Scholar 

  20. Lücke C, Zhang F, Rüterjans H, Hamilton JA, Sacchettini JC: Flexibility is a likely determinant of binding specificity in the case of ileal lipid binding protein. Structure 4: 785–800, 1996

    Google Scholar 

  21. Kramer W, Corsiero D, Friedrich M, Girbig F, Stengelin S, Weyland C: Intestinal absorption of bile acids: Paradoxical behaviour of the 14 kDa ileal lipid-binding protein in differential photoaffinity labelling. Biochem J 333: 335–341, 1998

    Google Scholar 

  22. Sacchettini JC, Gordon JI: Rat intestinal fatty acid-binding protein. A model system for analyzing the forces that can bind fatty acids to proteins. J Biol Chem 268: 18399–18402, 1993

    Google Scholar 

  23. Thompson J, Ory J, Reese-Wagoner A, Banaszak L: The liver fatty acid-binding protein: Comparison of cavity properties of intracellular lipid-binding proteins. Mol Cell Biochem 192: 9–16, 1999

    Google Scholar 

  24. Lücke C, Fushman D, Ludwig C, Hamilton JA, Sacchettini JC, Rüterjans HA: Comparative study of the backbone dynamics of two closely related lipid binding proteins: Bovine heart fatty acid binding protein and porcine ileal lipid binding protein. Mol Cell Biochem 192: 109–121, 1999

    Google Scholar 

  25. Lücke C, Zhang F, Hamilton JA, Sacchettini JC, Ruterjans H: Solution structure of ileal lipid binding protein in complex with glycocholate. Eur J Biochem 267: 2929–2938, 2000

    Google Scholar 

  26. Thompson J, Winter N, Terwey D, Bratt J, Banaszak L: The crystal structure of the liver fatty acid-binding protein. J Biol Chem 272: 7140–7150, 1997

    Google Scholar 

  27. Santomé JA, Di Pietro SM, Cavagnari BM, Cordoba OL, Dell’ Angelica EC: Fatty acid-binding proteins. Chronological description and discussion of hypotheses involving their molecular evolution. Trends Comp Biochem Physiol 4: 23–38, 1998

    Google Scholar 

  28. Poirier H, Niot I, Monnot MC, Braissant O, Meunier-Durmort C, Costet P, Pineau T, Wahli W, Willson TM, Besnard P: Differential involvement of peroxisome-proliferator-activated receptors alpha and delta in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. Biochem J 355: 481–488, 2001

    Google Scholar 

  29. Poirier H, Braissant O, Niot I, Wahli W, Besnard P: 9-cis-retinoic acid enhances fatty acid-induced expression of the liver fatty acidbinding protein gene. FEBS Lett 412: 480–484, 1997

    Google Scholar 

  30. Grober J, Zaghini I, Fujii H, Jones SA, Kliewer SA, Willson TM, Ono T, Besnard P: Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer J Biol Chem 274: 29749–29754, 1999

    Google Scholar 

  31. Hallden G, Holehouse EL, Dong X, Aponte GW: Expression of intestinal fatty acid-binding protein in intestinal epithelial cell lines, hBRIE 380 cells. Am J Physiol 267: G730–G743, 1994

    Google Scholar 

  32. Le Beyec J, Delers F, Jourdant F, Schreider C, Chambaz J, Cardot P, Pinçon-Raymond MA: Complete epithelial organization of Caco-2 cells induces I-FABP and potentializes apolipoprotein gene expression. Exp Cell Res 236: 311–320, 1997

    Google Scholar 

  33. Hallden G, Aponte GW: Evidence for a role of the gut hormone PYY in the regulation of intestinal fatty acid-binding protein transcripts in differentiated subpopulations of intestinal epithelial cell hybrids. J Biol Chem 272: 12591–12600, 1997

    Google Scholar 

  34. Aponte GW, Park K, Hess R, Garcia R, Taylor IL: Meal-induced peptide tyrosine tyrosine inhibition of pancreatic secretion in the rat. Faseb J 3: 1949–1955, 1989

    Google Scholar 

  35. Laburthe M, Chenut B, Rouyer-Fessard C, Tatemoto K, Couvineau A, Servin A, Amiranoff B: Interaction of peptide YY with rat intestinal epithelial plasma membranes: Binding of the radioiodinated peptide. Endocrinology 118: 1910–1917, 1986

    Google Scholar 

  36. Bass NM: The cellular fatty acid-binding proteins: Aspects of structure, regulation, and function. Int Rev Cytol 111: 143–184, 1988

    Google Scholar 

  37. Darimont C, Gradoux N, De Pover A: Epidermal growth factor regulates fatty acid uptake and metabolism in Caco-2 cells. Am J Physiol 276: G606–G612, 1999

    Google Scholar 

  38. Baier LJ, Sacchettini JC, Knowler WC, Eads J, Paolisso G, Tataranni PA, Mochizuki H, Bennett PH, Bogardus C, Prochazka M: An amino acid substitution in the human intestinal fatty acid-binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J Clin Invest 95: 1281–1287, 1995

    Google Scholar 

  39. Hegele RA, Harris SB, Hanley AJG, Sadikian S, Connelly PW, Zinman B: Genetic variation of intestinal fatty acid-binding protein associated with variation in body mass in aboriginal canadians. J Clin Endocrinol Metab 81: 4334–4337, 1996

    Google Scholar 

  40. Baier LJ, Bogardus C, Sacchettini JC: A polymorphism in the human intestinal fatty acid-binding protein alters fatty acid transport across Caco-2 cells. J Biol Chem 271: 10892–10896, 1996

    Google Scholar 

  41. Levy E, Menard D, Delvin E, Stan S, Mitchell G, Lambert M, Ziv E, Feoli-Fonseca JC, Seidman E: The polymorphism at codon 54 of the FABP2 gene increases fat absorption in human intestinal explants. J Biol Chem 276: 39679–39684, 2001

    Google Scholar 

  42. Prows DR, Schroeder F: Metallothionein-IIA promoter induction alters rat intestinal fatty acid-binding protein expression, fatty acid uptake, and lipid metabolism in transfected L-cells. Arch Biochem Biophys 340: 135–143, 1997

    Google Scholar 

  43. Atshaves BP, Foxworth WB, Frolov A, Roths JB, Kier AB, Oetama BK, Piedrahita JA, Schroeder F: Cellular differentiation and I-FABP protein expression modulate fatty acid uptake and diffusion. Am J Physiol 274: C633–C644, 1998

    Google Scholar 

  44. Holehouse E, Liu M-L, Aponte GW: Oleic acid distribution in small intestinal epithelial cells expressing intestinal-fatty acid binding protein. Biochim Biophys Acta 1390: 52–64, 1998

    Google Scholar 

  45. Wolfrum C, Buhlmann C, Rolf B, Börchers T, Spener F: Variation of liver-type fatty acid-binding protein content in the human hepatoma cell line HepG2 by peroxisome proliferators and antisense RNA affects the rate of fatty acid uptake. Biochim Biophys Acta 1437: 194–201, 1999

    Google Scholar 

  46. Hsu K-T, Storch J: Fatty acid transfer from liver and intestinal fatty acid-binding proteins to membranes occurs by different mechanisms. J Biol Chem 271: 13317–13323, 1996

    Google Scholar 

  47. Corsico B, Cistola DP, Frieden C, Storch J: The helical domain of intestinal fatty acid-binding protein is critical for collisional transfer of fatty acid to phospholipid membranes. Proc Natl Acad Sci USA 95: 12174–12178, 1998

    Google Scholar 

  48. Hodsdon ME, Cistola DP: Discrete backbone disorder in the nuclear magnetic resonance structure of apo intestinal fatty acidbinding protein: Implications for the mechanism of ligand entry. Biochemistry 36: 1450–1460, 1997

    Google Scholar 

  49. Alpers DH, Bass NM, Engle MJ, DeSchryver-Kecskemeti K: Intestinal fatty acid binding protein may favor differential apical fatty acid binding in the intestine. Biochim Biophys Acta 1483: 352–362, 2000

    Google Scholar 

  50. Vassileva G, Huwyler L, Poirier K, Agellon LB, Toth MJ: The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. Faseb J 14: 2040–2046, 2000

    Google Scholar 

  51. Wolfrum C, Borrmann CM, Borchers T, Spener F: Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha-and gamma-mediated gene expression via liver fatty acid binding protein: A signaling path to the nucleus. Proc Natl Acad Sci USA 98: 2323–2328, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besnard, P., Niot, I., Poirier, H. et al. New insights into the fatty acid-binding protein (FABP) family in the small intestine. Mol Cell Biochem 239, 139–147 (2002). https://doi.org/10.1023/A:1020505512364

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020505512364

Navigation