Skip to main content
Log in

Deterministic Model of Homophase and Heterophase Fluctuations in a Liquid–Vapor System

  • Published:
High Temperature Aims and scope

Abstract

Within the framework of the assembly-type catastrophe model, a nonlinear dynamic equation (DE) homogeneous in the parameter ηt with an aftereffect is constructed, in which ηt characterizes the deviation of the reduced density of a thin surface layer on the liquid-vapor interface from the mean density of the vapor-liquid system. This equation is used to treat a second-order nonlinear DE with a variable damping coefficient for a vapor-liquid system excited by periodic “impacts” (acts of evaporation and condensation of molecules). This DE is integrated over a finite time interval to find a two-dimensional mapping whose numerical solution describes the chaotic dynamics of the density in time, including “homophase” and “heterophase” fluctuations. For this system, the bifurcation diagrams are constructed and the Lyapunov exponents are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Frenkel', Ya.I., Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Moscow: Izd. AN SSSR (USSR Acad. Sci.), 1945.

    Google Scholar 

  2. Schuster, H., Deterministic Chaos: An Introduction, Weinheim: Physik, 1984. Translated under the title Determinirovannyi khaos. Vvedenie, Moscow: Mir, 1988.

    Google Scholar 

  3. Gilmore, R., Catastrophe Theory for Scientists and Engineers, New York: Wiley, 1981. Translated under the title Prikladnaya teoriya katastrof, Moscow: Mir, 1984, vols. 1, 2.

    Google Scholar 

  4. Bystrai, G.P. and Moiseeva, O.N., Development of Quantitative Methods of the Theory of First-Order Phase Transitions and Critical Phenomena in Liquid—Vapor System, in Metastabil'nye sostoyaniya i fazovye perekhody (Metastable States and Phase Transitions), Yekaterinburg: Izd. UrO RAN (Ural Div. Russ. Acad. Sci.), 1999, vol. 3, p. 151.

    Google Scholar 

  5. Lifshits, E.M. and Pitaevskii, L.P., Fizicheskaya kinetika, Moscow: Nauka, 1979. Translated under the title Physical Kinetics, Oxford: Pergamon, 1981.

  6. Rabinovich, V.A., Vasserman, A.A., Nedostup, V.I., and Veksler, L.S., Teplofizicheskie svoistva neona, argona, kriptona i ksenona, Moscow: Izd. Standartov, 1976. Translated under the title The Thermal Properties of Neon, Argon, Krypton, and Xenon, Washington, D.C.: Hemisphere, 1988.

    Google Scholar 

  7. Kolmanovskii, V.B., Soros. Obraz. Zh., 1996, no. 4, p. 122.

    Google Scholar 

  8. Berger, P., Pomeau, Y., and Vidal, C., L'Ordre dans le chaos: vers une approche deterministe de la turbulence, Paris: Hermann, 1984. Translated under the title Poryadok v khaose, Moscow: Mir, 1991.

    Google Scholar 

  9. Skripov, V.P., Metastabil'naya zhidkost' (Metastable Liquid), Moscow: Nauka, 1972.

  10. Nicolis, J.S., Dynamics of Hierarchical Systems: An Evolutionary Approach, Berlin: Springer, 1986. Translated under the title Dinamika ierarkhicheskikh sistem: Evolyutsionnoe predstavlenie, Moscow: Mir, 1989.

    Google Scholar 

  11. Feigenbaum, M.J., Universal Behavior in Nonlinear Systems, Los Alamos Sci., 1980, p. 4.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bystrai, G.P., Studenok, S.I. & Ivanova, S.I. Deterministic Model of Homophase and Heterophase Fluctuations in a Liquid–Vapor System. High Temperature 40, 723–729 (2002). https://doi.org/10.1023/A:1020440821122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020440821122

Keywords

Navigation