Skip to main content
Log in

Scaling Solutions of Inelastic Boltzmann Equations with Over-Populated High Energy Tails

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper deals with solutions of the nonlinear Boltzmann equation for spatially uniform freely cooling inelastic Maxwell models for large times and for large velocities, and the nonuniform convergence to these limits. We demonstrate how the velocity distribution approaches in the scaling limit to a similarity solution with a power law tail for general classes of initial conditions and derive a transcendental equation from which the exponents in the tails can be calculated. Moreover on the basis of the available analytic and numerical results for inelastic hard spheres and inelastic Maxwell models we formulate a conjecture on the approach of the velocity distribution function to a scaling form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. P. Collins, A Gas of Steel Balls, Sci. Am. 284:17 (2001); F. Rouyer and N. Menon, Phys. Rev. Lett. 85:3676 (2000).

    Google Scholar 

  2. C.S. Campbell, Annu. Rev. Fluid Mech. 22:57 (1990).

    Google Scholar 

  3. N. Sela and I. Goldhirsch, Phys. Fluids 7:507 (1995).

    Google Scholar 

  4. T. P. C. van Noije and M. H. Ernst, Granular Matter 1:57 (1998), and cond-mat/9803042.

    Google Scholar 

  5. Th. Biben, Ph. A. Martin, and J. Piasecki, preprint July 2001.

  6. A. Barrat, T. Biben, Z. Racz, E. Trizac, and F. van Wijland, cond-mat/0110345.

  7. J. J. Brey, M. J. Ruiz-Montero, and D. Cubero, Phys. Rev. E 54:3664 (1996).

    Google Scholar 

  8. J. M. Montanero and A. Santos, Granular Matter 2:53 (2000), and cond-mat/0002323.

    Google Scholar 

  9. M. Huthmann, J. A. G. Orza, and R. Brito, Granular Matter 2:189 (2000), and condmat/ 0004079.

    Google Scholar 

  10. T. P. C. van Noije, M. H. Ernst, E. Trizac, and I. Pagonabarraga, Phys. Rev. E 59:4326 (1999). I. Pagonabarraga, E. Trizac, T. P. C. van Noije, and M. H. Ernst, Phys. Rev E 65:011303 (2002).

    Google Scholar 

  11. S. E. Esipov and T. Pöschel, J. Stat. Phys. 86:1385 (1997).

    Google Scholar 

  12. E. Ben-Naim and P. Krapivsky, Phys. Rev. E 61:R5 (2000).

    Google Scholar 

  13. A. V. Bobylev, J. A. Carrillo, I. M. Gamba, J. Stat. Phys. 98:743 (2000).

    Google Scholar 

  14. J. A. Carrillo, C. Cercignani, and I. M. Gamba, Phys. Rev. E 62:7700 (2000).

    Google Scholar 

  15. C. Cercignani, J. Stat. Phys. 102:1407 (2001).

    Google Scholar 

  16. A. Bobylev and C. Cercignani, J. Stat. Phys. 106:547 (2002).

    Google Scholar 

  17. R. S. Krupp, A Non-Equilibrium Solution of the Fourier Transformed Boltzmann Equation, M.S. dissertation (M.I.T., Cambridge, MA, 1967).

    Google Scholar 

  18. A. V. Bobylev, Sov. Phys. Dokl. 20:820 (1975). A. V. Bobylev, Sov. Phys. Dokl. 21:632 (1976).

    Google Scholar 

  19. T. Krook and T. T. Wu, Phys. Rev. Lett. 36:1107 (1976).

    Google Scholar 

  20. M. H. Ernst, Phys. Rep. 78:1 (1981).

    Google Scholar 

  21. A. Baldassarri, U. Marini Bettolo Marconi, and A. Puglisi, Europhys. Lett. 58:14 (2002).

    Google Scholar 

  22. A. Baldassarri, private communication.

  23. P. Krapivsky and E. Ben-Naim, cond-mat/0111044, 2 Nov 2001, and J. Phys. A 35:L147 (2002) and Phys. Rev. E 66:011309 (2002).

    Google Scholar 

  24. M. H. Ernst and R. Brito, cond-mat/0111093, 6 November 2001, and Europhys. Lett. 58:182 (2002).

    Google Scholar 

  25. M. H. Ernst and R. Brito, Phys. Rev. E 65:040301(R) (2002).

    Google Scholar 

  26. B. Nienhuis, private communication, September 2001.

  27. I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70:1619 (1993).

    Google Scholar 

  28. P. K. Haff, J. Fluid Mech. 134:40 (1983).

    Google Scholar 

  29. J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys. 87:1051 (1997).

    Google Scholar 

  30. A. Baldassarri, U. Marini Bettolo Marconi, and A. Puglisi, Phys. Rev. E 65:051301 (2002).

    Google Scholar 

  31. A. Bobylev and C. Cercignani, Exact Eternal Solutions of the Boltzmann Equation (see http://www.math.tu-berlin.de/ ' tmr/preprint/d.html).

  32. A. Bobylev and C. Cercignani, J. Stat. Phys. 106:1039 (2002).

    Google Scholar 

  33. P. Résibois and M. de Leener, Classical Kinetic Theory of Fluids (Wiley, New York, 1977).

    Google Scholar 

  34. C. Cercignani, The Boltzmann Equation and Its Applications (Springer Verlag, New York, 1988).

    Google Scholar 

  35. D. Ruelle, J. Stat. Phys. 95:393 (1999).

    Google Scholar 

  36. D. J. Evans and L. Rondoni, Comments on the entropy of nonequilibrium steady states, J. Stat. Phys, this issue.

  37. J. R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics, Cambridge Lecture Notes in Physics, Vol. 14,Section 13.4 (Cambridge University Press, 1999).

  38. A. Bobylev and C. Cercignani, private communication.

  39. M. H. Ernst and R. Brito, in preparation.

  40. E. W. Montroll and B. J. West, On an enriched collection of Stochastic processes, Fluctuation Phenomena, E. W. Montroll and J. L. Lebowitz, eds. (North Holland, Amsterdam, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, M.H., Brito, R. Scaling Solutions of Inelastic Boltzmann Equations with Over-Populated High Energy Tails. Journal of Statistical Physics 109, 407–432 (2002). https://doi.org/10.1023/A:1020437925931

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020437925931

Navigation