Skip to main content
Log in

Quantitative analysis of the fluid inclusions by particle-induced gamma-ray emission

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The particle-induced gamma-ray emission (PIGE) method, very sensitive for the light elements Li, Be, B, F, Na, is complementary to the PIXE method for the determination of trace elements in complex materials. The deep penetration (more than 50 mm) of 3 MeV protons in light matrices allows heterogenities situated under the irradiated surface of the target to be revealed. This facility is exploited in earth sciences mainly to characterize in situ the fluid inclusions placed on the ion beam path. The quantitative PIGE analysis of the fluid requires a calibration valid for any inclusion of any thickness and at any depth. In this paper, the concentration of a light element is calculated in an occluded fluid by comparison to that of a homogenous massive mineral taken as a standard. An application is given on the quantitative determination of F in fluid inclusions in corundum by comparison to a topaz gemstone standard. A discussion follows on the choice of the energies at which the stopping power of the traversed materials is taken for the calculation of the concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. SHEPHERD, S. R. CHENERY, Geochim. Cosmochim. Acta, 59 (1995) 3997.

    Google Scholar 

  2. D. A. VANKO, S. R. SUTTON, M. L. RIVERS, R. J. BODNAR, Chem. Geol., 109 (1993) 125.

    Google Scholar 

  3. P. PHILIPPOT, B. MéNEZ, F. CHEVALLIER, F. GIBERT, F. LEGRAND, P. POPULUS, Chem. Geol., 144 (1998) 121.

    Google Scholar 

  4. A. J. ANDERSON, A. H. CLARK, X-P. MA, G. R. PALMER, J. D. MACARTHUR, Econ. Geol., 84 (1989) 924.

    Google Scholar 

  5. L. E. CARLSSON, K. R. AKSELSSON, Nucl. Instr. Meth. Phys. Res., 181 (1981) 531.

    Google Scholar 

  6. C. G. RYAN, D. R. COUSENS, C. A. HEINRICH, W. L. GRIFFIN, S. H. SIE, T. P. MERNAGH, Nucl. Instr. Meth. Phys. Res., B54 (1991) 292.

    Google Scholar 

  7. M. VOLFINGER, J-L. ROBERT, J. Radioanal. Nucl. Chem., 185 (1994) 273.

    Google Scholar 

  8. G. DECONNINK, J. Radioanal. Chem., 12 (1972) 157.

    Google Scholar 

  9. J. R. TESSNER, M. NASTASI, Handbook of Modern Ion Beam Material Analysis-Material Research Society, Pittsburg, 1995, p.591: Table A12.6a from ANTTILA et al. (1981) and KISS et al. (1984).

  10. A. F. RAKOTONDRAZAFY, B. MOINE, M. CUNEY, Contrib. Mineral. Petrol., 123 (1996) 190.

    Google Scholar 

  11. B. MOINE, A. RAMAMBAZAFY, A. F. RAKOTONDRAZAFY, M. CUNEY, P. DE PARSEVAL, Abstract, Proc. of XIV ECROFI (1997), Nancy, France, p. 209.

  12. K. ISHII, M. VALLADON, J-L. DEBRUN, Nucl. Instr. Meth., 150 (1978) 213.

    Google Scholar 

  13. J. F. ZIEGLER, J. P. BIERSACK, U. LITTMARK, The Stopping and Range of Ions in Matter, Vol. 1, J. F. ZIEGLER (Ed.), Vol. 1, Pergamon, New York, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volfinger, M. Quantitative analysis of the fluid inclusions by particle-induced gamma-ray emission. Journal of Radioanalytical and Nuclear Chemistry 253, 413–419 (2002). https://doi.org/10.1023/A:1020417402928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020417402928

Keywords

Navigation