Skip to main content
Log in

Front Propagation Techniques to Calculate the Largest Lyapunov Exponent of Dilute Hard Disk Gases

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A kinetic approach is adopted to describe the exponential growth of a small deviation of the initial phase space point, measured by the largest Lyapunov exponent, for a dilute system of hard disks, both in equilibrium and in a uniform shear flow. We derive a generalized Boltzmann equation for an extended one-particle distribution that includes deviations from the reference phase space point. The equation is valid for very low densities n, and requires an unusual expansion in powers of 1/|ln n|. It reproduces and extends results from the earlier, more heuristic clock model and may be interpreted as describing a front propagating into an unstable state. The asymptotic speed of propagation of the front is proportional to the largest Lyapunov exponent of the system. Its value may be found by applying the standard front speed selection mechanism for pulled fronts to the case at hand. For the equilibrium case, an explicit expression for the largest Lyapunov exponent is given and for sheared systems we give explicit expressions that may be evaluated numerically to obtain the shear rate dependence of the largest Lyapunov exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  2. D. Szasz (ed.), Hard Ball Systems and the Lorentz Gas, Encyclopaedia of Mathematical Sciences, Vol. 101 (Springer, 2000).

  3. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Viscosity of a simple fluid from its maximal Lyapunov exponents, Phys. Rev. A 42:5990 (1990).

    Google Scholar 

  4. E. G. D. Cohen, Transport coefficients and Lyapunov exponents, Physica A 213:293 (1995).

    Google Scholar 

  5. Ch. Dellago and H. A. Posch, Lyapunov spectrum and the conjugate pairing rule for a thermostated random Lorentz gas: Numerical simulations, Phys. Rev. Lett. 78:211 (1997).

    Google Scholar 

  6. C. Wagner, R. Klages, and G. Nicolis, Thermostating by deterministic scattering: Heat and shear flow, Phys. Rev. E 60:1401 (1999).

    Google Scholar 

  7. N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, Steady-state electrical-conduction in the periodic Lorentz gas, Comm. Math. Phys. 154:569 (1993).

    Google Scholar 

  8. C. Dettmann and G. P. Morriss, Proof of Lyapunov exponent pairing for systems at constant kinetic energy, Phys. Rev. E 53:R5545 (1996).

    Google Scholar 

  9. H. van Beijeren and J. R. Dorfman, Lyapunov exponents and Kolmogorov-Sinai entropy for the Lorentz gas at low densities, Phys. Rev. Lett. 74:4412 (1995); and Erratum: H. van Beijeren and J. R. Dorfman, Erratum to: Lyapunov exponents and Kolmogorov-Sinai entropy for the Lorentz gas at low densities, Phys. Rev. Lett. 76:3238 (1996).

    Google Scholar 

  10. H. van Beijeren, J. R. Dorfman, E. G. D. Cohen, Ch. Dellago, and H. A. Posch, Lyapunov exponents from kinetic theory for a dilute, field-driven Lorentz gas, Phys. Rev. Lett. 77: 1974 (1996).

    Google Scholar 

  11. J. R. Dorfman and H. van Beijeren, Dynamical systems theory and transport coefficients: A survey with applications to Lorentz gases, in Proceedings of the Euroconference on The Microscopic Approach to Complexity in Non-Equilibrium Molecular Simulations CECAM at ENS-Lyon, 1996, M. Mareschal (ed.), Physica A 240:12 (1997).

    Google Scholar 

  12. H. van Beijeren, J. R. Dorfman, Ch. Dellago, and H. A. Posch, Kolmogorov-Sinai entropy for dilute gases in equilibrium, Phys. Rev. E 56:5272 (1997).

    Google Scholar 

  13. A. Latz, H. van Beijeren, and J. R. Dorfman, Lyapunov spectrum and the conjugate pairing rule for a thermostated random Lorentz gas: Kinetic theory, Phys. Rev. Lett. 78:207 (1997).

    Google Scholar 

  14. H. van Beijeren, A. Latz, and J. R. Dorfman, Chaotic properties of dilute two-and three-dimensional random lorentz gases: Equilibrium systems, Phys. Rev. E 57:4077 (1998).

    Google Scholar 

  15. J. R. Dorfman, Deterministic chaos and the foundations of the kinetic theory of gases, Phys. Rep. 301:151 (1998).

    Google Scholar 

  16. J. R. Dorfman, An Introduction to Chaos in Non-Equilibrium Statistical Mechanics (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  17. D. Panja, J. R. Dorfman, and H. van Beijeren, Long-time-tail effects on Lyapunov exponents of a random, two-dimensional, field-driven Lorentz gas, J. Stat. Phys. 100:279 (2000).

    Google Scholar 

  18. H. Kruis, H. van Beijeren, and D. Panja, Systematic Density Expansion of the Lyapunov Exponents for Two-Dimensional Random Lorentz Gas (in preparation).

  19. R. van Zon, H. van Beijeren, and Ch. Dellago, Largest Lyapunov exponent for many particle systems at low densities, Phys. Rev. Lett. 80:2035 (1998).

    Google Scholar 

  20. R. van Zon, H. van Beijeren, and J. R. Dorfman, Kinetic theory of dynamical systems, in Proceedings of the NATO ASI on Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems, J. Karkheck, ed. (Kluwer, 2000), p. 131.

  21. R. van Zon, H. van Beijeren, and J. R. Dorfman, Kinetic theory estimates for the Kolmogorov-Sinai entropy, and the largest Lyapunov exponent for dilute, hard-sphere gases and for dilute, random Lorentz gases, in ref. 2, pp. 231-278.

  22. J. R. Dorfman, A. Latz, and H. van Beijeren, Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy methods for sums of Lyapunov exponents for dilute gases, Chaos 8:444 (1998).

    Google Scholar 

  23. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990).

    Google Scholar 

  24. W. van Saarloos, Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection, Phys. Rev. A 37:211 (1988). U. Ebert and W. van Saarloos, Universal algebraic relaxation of fronts propagating into an unstable state and implications for moving boundary approximations, Phys. Rev. Lett. 80:1650 (1998). U. Ebert and W. van Saarloos, Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts, Physica D 146:1 (2000).

    Google Scholar 

  25. P. Gaspard and J. R. Dorfman, Chaotic scattering theory, thermodynamic formalism, and transport coefficients, Phys. Rev. E 52:3525 (1995).

    Google Scholar 

  26. Ch. Dellago, H. A. Posch, and W. G. Hoover, Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states, Phys. Rev. E 53:1485 (1996).

    Google Scholar 

  27. A. W. Lees and S. F. Edwards, The computer study of transport processes under extreme conditions, J. Phys. C 5:1921 (1972).

    Google Scholar 

  28. D. J. Evans and S. Sarman, Equivalence of thermostatted nonlinear responses, Phys. Rev. E 48:65 (1993).

    Google Scholar 

  29. R. van Zon, The behavior of a Gaussian thermostat in sheared systems near the thermodynamic limit, Phys. Rev. E 60:4158 (1999).

    Google Scholar 

  30. C. Cercignani, Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh, 1975).

    Google Scholar 

  31. D. J. Isbister, D. J. Searles, and D. J. Evans, Symplectic properties of algorithms and simulation methods, in Proceedings of the Euroconference on The Microscopic Approach to Complexity in Non-Equilibrium Molecular Simulations CECAM at ENS-Lyon, 1996, M. Mareschal (ed.), Physica A 240:105 (1997). D. J. Searles, D. J. Evans, and D. J. Isbister, The conjugate-pairing rule for non-Hamiltonian systems, Chaos 8:337 (1998). But see also G. P. Morriss, Conjugate pairing of Lyapunov exponents for isokinetic shear flow algorithms, Phys. Rev. E 65:017201 (2002).

    Google Scholar 

  32. D. Panja and R. van Zon, Lyapunov exponent pairing for a thermostatted hard-sphere gas under shear in the thermodynamic limit, Phys. Rev. E 65:060102(R) (2002).

    Google Scholar 

  33. R. van Zon, Ph.D. thesis, Utrecht University, 2000.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Zon, R., van Beijeren, H. Front Propagation Techniques to Calculate the Largest Lyapunov Exponent of Dilute Hard Disk Gases. Journal of Statistical Physics 109, 641–669 (2002). https://doi.org/10.1023/A:1020414615453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020414615453

Navigation