Skip to main content
Log in

Large density expansion of a hydrodynamic theory for self-propelled particles

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Recently, an Enskog-type kinetic theory for Vicsek-type models for self-propelled particles has been proposed [T. Ihle, Phys. Rev. E 83, 030901 (2011)]. This theory is based on an exact equation for a Markov chain in phase space and is not limited to small density. Previously, the hydrodynamic equations were derived from this theory and its transport coefficients were given in terms of infinite series. Here, I show that the transport coefficients take a simple form in the large density limit. This allows me to analytically evaluate the well-known density instability of the polarly ordered phase near the flocking threshold at moderate and large densities. The growth rate of a longitudinal perturbation is calculated and several scaling regimes, including three different power laws, are identified. It is shown that at large densities, the restabilization of the ordered phase at smaller noise is analytically accessible within the range of validity of the hydrodynamic theory. Analytical predictions for the width of the unstable band, the maximum growth rate, and for the wave number below which the instability occurs are given. In particular, the system size below which spatial perturbations of the homogeneous ordered state are stable is predicted to scale with where √M is the average number of collision partners. The typical time scale until the instability becomes visible is calculated and is proportional to M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)

    Article  ADS  Google Scholar 

  2. S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)

    Article  ADS  Google Scholar 

  3. M.C. Marchetti, et al., Rev. Mod. Phys. 85, 1143 (2013)

    Article  ADS  Google Scholar 

  4. G. Rückner, R. Kapral, Phys. Rev. Lett. 98, 150603 (2007)

    Article  Google Scholar 

  5. D. Humphrey, et al., Nature 416, 413 (2002)

    Article  ADS  Google Scholar 

  6. M. Rubenstein, A. Cornejo, R. Nagpal, Science 345, 795 (2014)

    Article  ADS  Google Scholar 

  7. S. Wilson, et al., Swarm Intell. 8, 303 (2014)

    Article  Google Scholar 

  8. T. Vicsek, et al., Phys. Rev. Lett. 75, 1226 (1995)

    Article  ADS  Google Scholar 

  9. A. Czirók, H.E. Stanley, T. Vicsek, J. Phys. A 30, 1375 (1997)

    Article  ADS  Google Scholar 

  10. H. Levine, W.-J. Rappel, I. Cohen, Phys. Rev. E 63, 017101 (2000)

    Article  ADS  Google Scholar 

  11. I.D. Couzin, et al., J. theor. Biol. 218, 1 (2002)

    Article  MathSciNet  Google Scholar 

  12. F. Thüroff, C.A. Weber, E. Frey, Phys. Rev. Lett. 111, 190601 (2013)

    Article  ADS  Google Scholar 

  13. T. Hanke, C.A. Weber, E. Frey, Phys. Rev. E 88, 052309 (2013)

    Article  ADS  Google Scholar 

  14. J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Toner, Phys. Rev. E 86, 031918 (2012)

    Article  ADS  Google Scholar 

  16. K. Kruse, et al., Eur. Phys. J. E 16, 5 (2005)

    Article  Google Scholar 

  17. I.S. Aranson, L.S. Tsimring, Phys. Rev. E 71, 050901 (2005)

    Article  ADS  Google Scholar 

  18. T. Ihle, Phys. Rev. E 83, 030901 (2011)

    Article  ADS  Google Scholar 

  19. T. Ihle, [arXiv:1006.1825v1] (old version of Ref. [18])

  20. T. Ihle, Phys. Rev. E 88, 040303 (2013)

    Article  ADS  Google Scholar 

  21. T. Ihle, Eur. Phys. J. Special Topics 223, 1293 (2014)

    Article  ADS  Google Scholar 

  22. T. Ihle, Eur. Phys. J. Special Topics 223, 1423 (2014)

    Article  ADS  Google Scholar 

  23. A. Peshkov, E. Bertin, F. Ginelli, H. Chaté, Eur. Phys. J. Special Topics 223, 1315 (2014)

    Article  ADS  Google Scholar 

  24. T. Ihle, Eur. Phys. J. Special Topics 223, 1427 (2014)

    Article  ADS  Google Scholar 

  25. E. Bertin, et al., Eur. Phys. J. Special Topics 223, 1419 (2014)

    Article  ADS  Google Scholar 

  26. Y.-L. Chou, R. Wolfe, T. Ihle, Phys. Rev. E 86, 021120 (2012)

    Article  ADS  Google Scholar 

  27. M. Romensky, V. Lobaskin, T. Ihle, Phys. Rev. E 90, 063315 (2014)

    Article  ADS  Google Scholar 

  28. E. Bertin, M. Droz, G. Grégoire, Phys. Rev. E 74, 022101 (2006)

    Article  ADS  Google Scholar 

  29. E. Bertin, M. Droz, G. Grégoire, J. Phys. A 42, 445001 (2009)

    Article  ADS  Google Scholar 

  30. R. Großmann, L. Schimansky-Geier, P. Romanczuk, New J. Phys. 15, 085014 (2013)

    Article  ADS  Google Scholar 

  31. M. Romenskyy, V. Lobaskin, Eur. Phys. J.B 86, 91 (2013)

    Article  ADS  Google Scholar 

  32. G. Grégoire, H. Chaté, Phys. Rev. Lett. 92 025702 (2004)

    Article  ADS  Google Scholar 

  33. H. Chaté, F. Ginelli, G. Grégoire, F. Raynaud, Phys. Rev. E 77 046113 (2008)

    Article  ADS  Google Scholar 

  34. Y.L. Chou, T. Ihle, Phys. Rev. E 91, 022103 (2015)

    Article  ADS  Google Scholar 

  35. T. Ihle, Phys. Chem. Chem. Phys. 11, 9667 (2009)

    Article  Google Scholar 

  36. A. Peshkov, S. Ngo, E. Bertin, H. Chaté, F. Ginelli, Phys. Rev. Lett. 109, 098101 (2012)

    Article  ADS  Google Scholar 

  37. S. Mishra, A. Baskaran, M.C. Marchetti, Phys. Rev. E 81, 061916 (2010)

    Article  ADS  Google Scholar 

  38. A.M. Menzel, Phys. Rev. E 85, 021912 (2012)

    Article  ADS  Google Scholar 

  39. P. Romanczuk, L. Schimansky-Geier, Ecol. Complex. 10, 83 (2012)

    Article  Google Scholar 

  40. R.W. Tegeder, J. Krause, Philos. Trans. R. Soc. London B 350, 381 (1995)

    Article  ADS  Google Scholar 

  41. M. Ballerini, et al., Proc. Natl. Acad. Sci. USA 105, 1232 (2008)

    Article  ADS  Google Scholar 

  42. M. Ballerini, Anim. Behav., et al., Proc. Natl. Acad. Sci. USA 76, 201 (2008)

    Google Scholar 

  43. G. Baglietto, E.V. Albano, Phys. Rev. E 78, 021125 (2008)

    Article  ADS  Google Scholar 

  44. G. Baglietto, E.V. Albano, Phys. Rev. E 80, 050103 (2009)

    Article  ADS  Google Scholar 

  45. M. Nagy, I. Daruka, T. Vicsek, Physica A 373, 445 (2007)

    Article  ADS  Google Scholar 

  46. T. Ihle (unpublished)

  47. A. Peshkov, I.S. Aranson, E. Bertin, H. Chaté, F. Ginelli, Phys. Rev. Lett. 109, 268701 (2012)

    Article  ADS  Google Scholar 

  48. In this context, “enslaved” means that the higher order coefficients are functionals of the lower Fourier coefficients g0,g1,h0,h1, and depend only indirectly on space and time through the temporal and spatial variations of these lower order coefficients

  49. The critical noise ηC goes to 2π for M → ∞, [18]. η = 2π means that particle directions are completely randomized in every iteration, and all memory of previous orientations is destroyed: particles just perform independent random walks. Ring-kinetic theory [34] predicts that for η = 2π the common prefactor of the amplification factor for connected correlation functions becomes zero. Thus, even for η slightly smaller than 2π, correlations will be strongly damped

  50. Note, that for M ≫ 1, the restriction to large mean free path is not a major restriction. It just leads to an easier evaluation of the transport coefficients but, in principle, can be removed by including the effects of collisional momentum transfer, as shown in Ref. [35]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ihle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihle, T. Large density expansion of a hydrodynamic theory for self-propelled particles. Eur. Phys. J. Spec. Top. 224, 1303–1324 (2015). https://doi.org/10.1140/epjst/e2015-02461-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02461-4

Keywords

Navigation