Skip to main content
Log in

Transport Coefficients in Some Stochastic Models of the Revised Enskog Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A stochastic model of the revised Enskog equation is considered. A choice of the smearing function suggested by the work of Leegwater is used to apply the model to the repulsive part of the Lennard-Jones potential and the inverse-power soft-sphere potential. The virial coefficients obtained from the equilibrium properties of the models are in excellent agreement with the known exact coefficients for these models. The transport coefficients for the repulsive Lennard-Jones (RLP) model are also computed and appear to be of comparable accuracy to the Enskog-theory coefficients applied directly to a hard-sphere system, although exact results for the RLP with which to make an extensive comparison are not yet available. The pressure and the transport coefficients obtained from the model (shear viscosity, thermal conductivity, and self-diffusion) are compared with the pressure and the corresponding transport coefficients predicted by the Enskog and square-well kinetic theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. A. Leegwater, Velocity autocorrelation function of Lennard-Jones fluids, J. Chem. Phys. 94:7402–7410 (1991).

    Google Scholar 

  2. D. Enskog, Kinetische Theorie, Kgl. Svenska Vetenskaps Akademiens Handl 63, no. 4 (1921) [English translation in S. Brush, Kinetic Theory, Vol. 3 (Pergamon Press, New York, 1972)].

  3. H. van Beijeren and M. H. Ernst, The modified Enskog equation, Physica 68:437–456 (1973).

    Google Scholar 

  4. P. Résibois and M. De Leener, Classical Kinetic Theory of Fluids (Wiley, New York, 1977).

    Google Scholar 

  5. H. T. Davis, Stuart A. Rice, and J. V. Sengers, On the kinetic theory of dense fluids. IX. The fluid of rigid spheres with a square-well attraction, J. Chem. Phys. 35:2210–2233 (1961).

    Google Scholar 

  6. J. Karkheck and G. Stell, Maximization of entropy, kinetic equations, and irreversible thermodynamics, Phys. Rev. A 25:3302–3327 (1982).

    Google Scholar 

  7. G. Stell, J. Karkheck, and H. van Beijeren, Kinetic mean field theories: Results of energy constraint in maximizing entropy, J. Chem. Phys. 79:3166–3167 (1983).

    Google Scholar 

  8. J. Karkheck, H. van Beijeren, I. de Schepper, and G. Stell, Kinetic theory and H theorem for a dense square-well fluid, Phys. Rev. A 32:2517–2520 (1985).

    Google Scholar 

  9. J. Blawzdziewicz and G. Stell, Local H-theorem for a kinetic variational theory, J. Stat. Phys. 56:821–840 (1989).

    Google Scholar 

  10. H. vanBeijeren, Kinetic theory of dense gases and liquids, inFundamental Problems in Statistical Mechanics VII, H. van Beijren, ed. (Elsevier, 1990), pp.357–380.

  11. J. Karkheck, G. Stell, and J. Xu, Transport theory for the Lennard-Jones dense fluid, J. Chem. Phys. 89:5829–5833 (1988).

    Google Scholar 

  12. A. Ya. Povzner, The Boltzmann equation in the kinetic theory of gases, Amer. Math. Soc. Transl. 47:193–216 (1962).

    Google Scholar 

  13. M. Lachowicz and M. Pulvirenti, A stochastic system of particles modeling the Euler equation, Arch. Rat. Mech. Anal. 109:81–93 (1990).

    Google Scholar 

  14. M. Pulvirenti, Kinetic limits for stochastic particle systems, in Lecture Notes in Mathematics, Vol. 1627, D. Talay and L. Tubaro, eds. (Springer-Verlag, 1995), pp. 96–126.

  15. N. Bellomo and J. Polewczak, The generalized Boltzmann equation existence and exponential trend to equilibrium, C. R. Acad. Sci. Paris, Série I 319:893–898 (1994).

    Google Scholar 

  16. D. Ruelle, Statistical Mechanics (Benjamin, London, 1969).

    Google Scholar 

  17. J. Polewczak and G. Stell, New properties of a class of generalized kinetic equations, J. Stat. Phys. 64:437–464 (1991).

    Google Scholar 

  18. M. Mareschal, J. Blawzdziewicz, and J. Piasecki, Local entropy production from the revised Enskog equation: General formulation for inhomogeneous fluids, Phys. Rev. Lett. 52:1169–1172 (1984).

    Google Scholar 

  19. J. Jeans, Dynamical Theory of Gases (Cambridge University Press, Cambridge, 1925).

    Google Scholar 

  20. T. Kihara and T. Hikita, in Fourth Symposium on Combustion (Williams and Wilkins Co., Baltimore, 1953), 458.

    Google Scholar 

  21. J. S. Rowlinson, An equation of state of gases at high temperatures and densities, Molecular Phys. 7:349 (1964).

    Google Scholar 

  22. J. S. Rowlinson, The statistical mechanics of systems with steep intermolecular potentials, Molecular Phys. 8:107 (1964).

    Google Scholar 

  23. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51:635 (1969).

    Google Scholar 

  24. W. Sung and G. Stell, J. Chem. Phys. 80:3350 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polewczak, J., Stell, G. Transport Coefficients in Some Stochastic Models of the Revised Enskog Equation. Journal of Statistical Physics 109, 569–590 (2002). https://doi.org/10.1023/A:1020406413636

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020406413636

Navigation