Skip to main content
Log in

Mechanisms of Adenosine Release in the Developing and Adult Mouse Hippocampus

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Adenosine is a neuromodulator known to inhibit the synaptic release of neurotransmitters, e.g., glutamate, and to hyperpolarize postsynaptic neurons. The release of adenosine is markedly enhanced under ischemic conditions. It may then act as an endogenous neuroprotectant against cerebral ischemia and excitotoxic neuronal damage. The mechanisms by which adenosine is released from nervous tissue are not fully known, particularly in the immature brain. We now characterized the release of [3H]adenosine from hippocampal slices from developing (7-day-old) and adult (3-month-old) mice using a superfusion system. The properties of the release differed only partially in the immature and mature hippocampus. The K+-evoked release was Ca2+ and Na+ dependent. Anion channels were also involved. Ionotropic glutamate receptor agonists potentiated the release in a receptor-mediated manner. Activation of metabotropic glutamate receptors enhanced the release in developing mice, with group II receptors alone being effective. The evoked adenosine release apparently provides neuroprotective effects against excitotoxicity under cell-damaging conditions. Taurine had no effect on adenosine release in adult mice, but depressed the release concentration dependently in the immature hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cunha, R. A. 2001. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: Different roles, different sources and different receptors. Neurochem. Int. 38:107-125.

    Google Scholar 

  2. Latini, S. and Pedata, F. 2001. Adenosine in the central nervous system: Release mechanisms and extracellular concentrations. J. Neurochem. 79:463-484.

    Google Scholar 

  3. Haas, H. L. and Greene, R. W. 1988. Endogenous adenosine inhibits hippocampal CA1 neurones: Further evidence from extraand intracellular recording. Naunyn Schmiedeberg's Arch. Pharmacol. 337:561-565.

    Google Scholar 

  4. Psarropoulou, C., Kostopoulos, G., and Haas, H. L. 1990. An electrophysiological study of the ontogenesis of adenosine receptors in the CA1 area of rat hippocampus. Dev. Brain Res. 55:147-150.

    Google Scholar 

  5. Daval, J.-L., Werck, M. C., Nehlig, A., and Pereira de Vasconcelos, A. 1991. Quantitative autoradiographic study of the postnatal development of adenosine A1 receptors and their coupling to G proteins in the rat brain. Neuroscience 40:841-851.

    Google Scholar 

  6. Hagberg, H., Andersson, P., Lazarewicz, J., Jacobson, I., Butcher, S., and Sandberg, M. 1987. Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J. Neurochem. 49:227-231.

    Google Scholar 

  7. Phillis, J. W., Walter, G. A., O'Regan, M. H., and Stair, R. E. 1987. Increases in cerebral cortical perfusate adenosine and inosine concentrations during hypoxia and ischemia. J. Cereb. Blood Flow Metab. 7:679-686.

    Google Scholar 

  8. Rudolphi, K. A., Schubert, P., Parkinson, F. E., and Fredholm, B. B. 1992. Adenosine and brain ischemia. Cerebrovasc. Brain Metab. Rev. 4:346-369.

    Google Scholar 

  9. Dragunow, M. and Faull, R. L. 1988. Neuroprotective effects of adenosine. Trends Pharmacol. Sci. 9:193-194.

    Google Scholar 

  10. Deckert, J. and Gleiter, C. H. 1994. Adenosine: An endogenous neuroprotective metabolite and neuromodulator. J. Neural Transm. 43(Suppl.):23-31.

    Google Scholar 

  11. Saransaari, P. and Oja, S. S. 2000. Taurine and neural cell damage. Amino Acids 19:509-526.

    Google Scholar 

  12. Kontro, P. and Oja, S. S. 1987. Taurine and GABA release from mouse cerebral cortex slices: Potassium stimulation releases more taurine than GABA from developing brain. Dev. Brain Res. 37:277-291.

    Google Scholar 

  13. Huxtable, R. J. 1992. The physiological actions of taurine. Physiol. Rev. 72:101-163.

    Google Scholar 

  14. Sturman, J. A. 1993. Taurine in development. Physiol. Rev. 73:119-147.

    Google Scholar 

  15. Bouchard, R. and Fedida, D. 1995. Closed-and open-state binding of 4-aminopyridine to the cloned human potassium channel Kv1.5. J. Pharmacol. Exp. Ther. 275:864-876.

    Google Scholar 

  16. Doble, A. 1996. The pharmacology and mechanism of action of riluzole. Neurology 47:S233-S241.

    Google Scholar 

  17. Hamill, O. P. and McBride, D. W. Jr. 1996. The pharmacology of mechanogated membrane ion channels. Pharmacol. Rev. 48: 231-252.

    Google Scholar 

  18. Saransaari, P. and Oja, S. S. 1994. Taurine release from mouse hippocampal slices: Effects of glutamatergic substances and hypoxia. Adv. Exp. Med. Biol. 359:279-287.

    Google Scholar 

  19. Hoehn, K. and White, T. D. 1990. Role of excitatory amino acid receptors in K1-and glutamate-evoked release of endogenous adenosine from rat cortical slices. J Neurochem. 54:256-265.

    Google Scholar 

  20. Craig, C. G. and White, T. D. 1993. N-Methyl-D-aspartate-and non-N-methyl-D-aspartate-evoked adenosine release from rat cortical slices: Distinct purinergic sources and mechanisms of release. J. Neurochem. 60:1073-1080.

    Google Scholar 

  21. Latini, S., Pedata, F., and Pepeu, G. 1997. The contribution of different types of calcium channels to electrically-evoked adenosine release from rat hippocampal slices. Naunyn Schmiedeberg's Arch. Pharmacol. 355:250-255.

    Google Scholar 

  22. Hoehn, K. and White, T. D. 1990. Glutamate-evoked release of endogenous adenosine from rat cortical synaptosomes is mediated by glutamate uptake and not by receptors. J. Neurochem. 54:1716-1724.

    Google Scholar 

  23. Chen, Y., Graham, D. I., and Stone, T. W. 1992. Release of endogenous adenosine and its metabolites by the activation of NMDA receptors in the rat hippocampus in vivo. Br. J. Pharmacol. 106:632-638.

    Google Scholar 

  24. Korpi, E. R. and Oja, S. S. 1983. Characteristics of taurine release from cerebral cortex slices induced by sodium-deficient media. Brain Res. 289:197-204.

    Google Scholar 

  25. Parkinson, F. E., Rudolphi, K. A., and Fredholm, B. B. 1994. Propentofylline: A nucleoside transport inhibitor with neuro-protective effects in cerebral ischemia. Gen. Pharmacol. 25:1053-1058.

    Google Scholar 

  26. Sweeney, M. I. 1996. Adenosine release and uptake in cerebellar granule neurons both occur via an equilibrative nucleoside carrier that is modulated by G proteins. J. Neurochem. 67: 81-88.

    Google Scholar 

  27. Oja, S. S. and Korpi, E. R. 1985. Amino acid transport. Pages 311-337, in Lajtha A. (ed.) Handbook of Neurochemistry, Vol. 5, 2nd ed. Plenum Press, New York.

    Google Scholar 

  28. Schousboe, A., Morán, J., and Pasantes-Morales, H. 1990. Potassium-stimulated release of taurine from cultured cerebellar granule cells is associated with cell swelling. J. Neurosci. Res. 27:71-77.

    Google Scholar 

  29. Saransaari, P. and Oja, S. S. 1999. Mechanisms of D-aspartate release under ischemic conditions in mouse hippocampal slices. Neurochem. Res. 24:1009-1016.

    Google Scholar 

  30. Delaney, S. M., Shepel, P. N., and Geiger, J. D. 1998. Levels of endogenous adenosine in rat striatum. I. Regulation by ionotropic glutamate receptors, nitric oxide and free radicals. J. Pharmacol. Exp. Ther. 285:561-567.

    Google Scholar 

  31. Craig, C. G. and White, T. D. 1993. NMDA-evoked adenosine release from rat cortex does not require the intermediate formation of nitric oxide. Neurosci. Lett. 159:167-169.

    Google Scholar 

  32. Craig, C. G., Temple, S. D., and White, T. D. 1994. Is cyclic AMP involved in excitatory amino acid-evoked adenosine release from rat cortical slices. Eur. J. Pharmacol. 269:79-85.

    Google Scholar 

  33. Szatkowski, M. and Attwell, D. 1994. Triggering and execution of neuronal death in brain ischemia: Two phases of glutamate release by different mechanisms. Trends Neurosci. 17:359-365.

    Google Scholar 

  34. Pin, J.-P. and Duvoisin, R. 1995. The metabotropic glutamate receptors: Structure and functions. Neuropharmacology 34:1-26.

    Google Scholar 

  35. Conn, P. J. and Pin, J.-P. 1997. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37:205-237.

    Google Scholar 

  36. Riedel, G. 1996. Function of metabotropic glutamate receptors in learning and memory. Trends Neurosci. 19:219-224.

    Google Scholar 

  37. Uyama, Y., Ishida, M., and Shinozaki, H., 1997. DCG-IV a potent metabotropic glutamate receptor agonist, as an NMDA receptor agonist in the rat cortical slice. Brain Res. 752:327-330.

    Google Scholar 

  38. Sánchez-Prieto, J., Budd, D. C., Herrero, I., Vázquez, E., and Nicholls, D. G., 1996. Presynaptic receptors and the control of glutamate exocytosis. Trends Neurosci. 19:235-239.

    Google Scholar 

  39. Cozzi, A., Attucci, S., Peruginelli, F., Marinozzi, M., Luneia, R., Pellicciari, R., and Moroni, F. 1997. Type 2 metabotropic glutamate (mGlu) receptors tonically inhibit transmitter release in rat caudate nucleus: In vivo studies with (2S,18S,28S,38R)-2-(28-carboxy-38-phenylcyclopropyl)glycine, a new potent and selective antagonist. Eur. J. Neurosci. 9:1350-1355.

    Google Scholar 

  40. Bruno, V., Battaglia, G., Copani, A., Giffard, R. G., Raciti, G., Shinozaki, H., and Nicoletti, F. 1995. Activation of class II or III metabotropic glutamate receptors protects cultured cortical neurons against excitotoxic degeneration. Eur. J. Neurosci. 7: 1906-1913.

    Google Scholar 

  41. McDonald, J. W. and Johnston, M. V. 1990. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res. Rev. 15:41-70.

    Google Scholar 

  42. Le Grevés, P., Hoogendoorn, K., Synnergren, B., Meyerson, B., and Nyberg, F. 1996. The relationship between the NMDA receptor NR1 subunit mRNA and [3H]MK-801 binding in the embryonic and early postnatal rat CNS. Neurosci. Res. Commun. 19:145-152.

    Google Scholar 

  43. Pokorny, J. and Yamamoto, T. 1981. Postnatal ontogenesis of hippocampal CA1 area in rats. I. Development of dendritic arborization in pyramidal neurons. Brain Res. Bull. 7:113-120.

    Google Scholar 

  44. Miller, L. P., Johnston, A. E., Gelhard, R. E., and Insel T. R. 1990. The ontogeny of excitatory amino acid receptors in the rat forebrain. II. Kainic acid receptors. Neuroscience 35:45-51.

    Google Scholar 

  45. Cunha, R. A., Johansson, B., Van der Ploeg, I., Sebastiao, A. M., Ribeiro, J. A., and Fredholm, B. B. 1994. Evidence for functionally important adenosine A2A receptors in the rat hippocampus. Brain Res. 649:208-216.

    Google Scholar 

  46. Sebastiao, A. M., Stone, T. W., and Ribeiro, J. A. 1990. The inhibitory adenosine receptor at the neuromuscular junction and hippocampus of the rat: Antagonism by 1,3,8-substituted xanthines. Br. J. Pharmacol. 101:453-459.

    Google Scholar 

  47. Greene, R. W. and Haas, H. L. 1991. The electrophysiology of adenosine in the mammalian central nervous system. Prog. Neurobiol. 36:329-341.

    Google Scholar 

  48. Sebastiao, A. M. and Ribeiro, J. A. 1992. Evidence for the presence of excitatory A2 adenosine receptors in the rat hippocampus. Neurosci. Lett. 138:41-44.

    Google Scholar 

  49. Fredholm, B. B. and Dunwiddie, T. V. 1988. How does adenosine inhibit transmitter release? Trends Pharmacol. Sci. 9:130-134.

    Google Scholar 

  50. Ferre, S., Rubio, A., and Fuxe, K. 1991. Stimulation of adenosine A2 receptors induces catalepsy. Neurosci. Lett. 130:162-164.

    Google Scholar 

  51. Kurokawa, M., Kirk, I. P., Kirkpatrick, K. A., Kase, H., and Richardson, P. J. 1994. Inhibition by KF17837 of adenosine A2A receptor-mediated modulation of striatal GABA and ACh release. Br. J. Pharmacol. 113:43-48.

    Google Scholar 

  52. Corsi, C., Melani, A., Bianchi, L., Pepeu, G., and Pedata, F. 1999. Striatal A2A adenosine receptors differentially regulate spontaneous and K1-evoked glutamate release in vivo in young and aged rats. Neuroreport 10:687-691.

    Google Scholar 

  53. Greiger, J. D., LaBella, F. S., and Nagy, J. I. 1984. Ontogenesis of adenosine receptors in the central nervous system of the rat. Brain Res. 315:97-104.

    Google Scholar 

  54. Johansson, B., Georgiev, V., and Fredholm, B. B. 1997. Distribution and postnatal ontogeny of adenosine A2A receptors in rat brain: Comparison with dopamine receptors. Neuroscience 80:1187-1207.

    Google Scholar 

  55. Morgan, P. F., Deckert, J., Nakajima, T., Daval, J. L., and Marangos, P. J. 1990. Late ontogenetic development of adenosine A1 receptor coupling to associated G-proteins in guinea pig cerebellum but not forebrain. Mol. Cell. Biol. 921:169-176.

    Google Scholar 

  56. Saransaari, P. and Oja, S. S. 1999. Characteristics of ischemiainduced taurine release in the developing mouse hippocampus. Neuroscience 94:949-954.

    Google Scholar 

  57. Kontro, P., Marnela, K.-M., and Oja, S. S. 1980. Free amino acids in the synaptosome and synaptic vesicle fractions of different bovine brain areas. Brain Res. 184:129-141.

    Google Scholar 

  58. Magnusson, K. R., Clements, J. R., Wu, J.-Y., and Beitz, A. J. 1989. Colocalization of taurine-and cysteine sulfinic acid decarboxylase-like immunoreactivity in the hippocampus of the rat. Synapse 4:55-69.

    Google Scholar 

  59. Saransaari, P. and Oja, S. S. 1998. Release of endogenous glutamate, aspartate, GABA and taurine from hippocampal slices from adult and developing mice under cell-damaging conditions. Neurochem. Res. 23:563-570.

    Google Scholar 

  60. Taber, K. H., Lin, C.-T., Liu, J.-W., Thalmann, R., and Wu, J.-Y. 1986. Taurine in hippocampus: localization and postsynaptic action. Brain Res. 386:113-121.

    Google Scholar 

  61. French, E. D., Vezzani, A., Whetsell, W. O. Jr., and Schwarcz, R. 1986. Antiexcitotoxic actions of taurine in the rat hippocampus studied in vivo and in vitro. Adv. Exp. Med. Biol. 203:349-362.

    Google Scholar 

  62. Trenkner, E. 1990. The role of taurine and glutamate during early postnatal cerebellar development of normal and weaver mutant mice. Adv. Exp. Med. Biol. 268:239-244.

    Google Scholar 

  63. Schurr, A., Tseng, M. T., West, C. A., and Rigor, B. M. 1987. Taurine improves the recovery of neuronal function following cerebral hypoxia: An in vitro study. Life Sci. 40:2059-2066.

    Google Scholar 

  64. Oja, S. S. and Kontro, P. 1983. Free amino acids in epilepsy: possible role of taurine. Acta Neurol. Scand. 67(Suppl. 93):5-20.

    Google Scholar 

  65. Saransaari, P. and Oja, S. S. 2000. Modulation of the ischemiainduced taurine release by adenosine receptors in the developing and adult mouse hippocampus. Neuroscience 97:425-430.

    Google Scholar 

  66. Saransaari, P. and Oja, S. S. 2002. Characterization of Nmethyl-D-aspartate-evoked taurine release in the developing and adult mouse hippocampus. Amino Acids, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saransaari, P., Oja, S.S. Mechanisms of Adenosine Release in the Developing and Adult Mouse Hippocampus. Neurochem Res 27, 911–918 (2002). https://doi.org/10.1023/A:1020343631833

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020343631833

Navigation