Skip to main content
Log in

The impact of inosine on hippocampal synaptic transmission and plasticity involves the release of adenosine through equilibrative nucleoside transporters rather than the direct activation of adenosine receptors

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Inosine has robust neuroprotective effects, but it is unclear if inosine acts as direct ligand of adenosine receptors or if it triggers metabolic effects indirectly modifying the activity of adenosine receptors. We now combined radioligand binding studies with electrophysiological recordings in hippocampal slices to test how inosine controls synaptic transmission and plasticity. Inosine was without effect at 30 μM and decreased field excitatory post-synaptic potentials by 14% and 33% at 100 and 300 μM, respectively. These effects were prevented by the adenosine A1 receptor antagonist DPCPX. Inosine at 300 (but not 100) μM also decreased the magnitude of long-term potentiation (LTP), an effect prevented by DPCPX and by the adenosine A2A receptor antagonist SCH58261. Inosine showed low affinity towards human and rat adenosine receptor subtypes with Ki values of > 300 µM; only at the human and rat A1 receptor slightly higher affinities with Ki values of around 100 µM were observed. Affinity of inosine at the rat A3 receptor was higher (Ki of 1.37 µM), while it showed no interaction with the human orthologue. Notably, the effects of inosine on synaptic transmission and plasticity were abrogated by adenosine deaminase and by inhibiting equilibrative nucleoside transporters (ENT) with dipyridamole and NBTI. This shows that the impact of inosine on hippocampal synaptic transmission and plasticity is not due to a direct activation of adenosine receptors but is instead due to an indirect modification of the tonic activation of these adenosine receptors through an ENT-mediated modification of the extracellular levels of adenosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data can be made available upon reasonable request.

References

  1. Agostinho P, Madeira D, Dias L, Simões AP, Cunha RA, Canas PM (2020) Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res 162:105253. https://doi.org/10.1016/j.phrs.2020.105253

    Article  CAS  PubMed  Google Scholar 

  2. Almeida T, Rodrigues RJ, de Mendonça A, Ribeiro JA, Cunha RA (2003) Purinergic P2 receptors trigger adenosine release leading to adenosine A2A receptor activation and facilitation of long-term potentiation in rat hippocampal slices. Neuroscience 122:111–121. https://doi.org/10.1016/s0306-4522(03)00523-2

    Article  CAS  PubMed  Google Scholar 

  3. Alnouri MW, Jepards S, Casari A, Schiedel AC, Hinz S, Müller CE (2015) Selectivity is species-dependent: characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal 11:389–407. https://doi.org/10.1007/s11302-015-9460-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alzheimer C, Kargl L, ten Bruggencate G (1991) Adenosinergic inhibition in hippocampus is mediated by adenosine A1 receptors very similar to those of peripheral tissues. Eur J Pharmacol 196:313–317. https://doi.org/10.1016/0014-2999(91)90445-v

    Article  CAS  PubMed  Google Scholar 

  5. Anderson WW, Collingridge GL (2007) Capabilities of the WinLTP data acquisition program extending beyond basic LTP experimental functions. J Neurosci Methods 162:346–356. https://doi.org/10.1016/j.jneumeth.2006.12.018

    Article  PubMed  Google Scholar 

  6. Askalan R, Richardson PJ (1994) Role of histidine residues in the adenosine A2a receptor ligand binding site. J Neurochem 63:1477–1484. https://doi.org/10.1046/j.1471-4159.1994.63041477.x

    Article  CAS  PubMed  Google Scholar 

  7. Barczyk K, Ehrchen J, Tenbrock K, Ahlmann M, Kneidl J, Viemann D, Roth J (2010) Glucocorticoids promote survival of anti-inflammatory macrophages via stimulation of adenosine receptor A3. Blood 116:446–455. https://doi.org/10.1182/blood-2009-10-247106

    Article  CAS  PubMed  Google Scholar 

  8. Bell MJ, Kochanek PM, Carcillo JA, Mi Z, Schiding JK, Wisniewski SR, Clark RS, Dixon CE, Marion DW, Jackson E (1998) Interstitial adenosine, inosine, and hypoxanthine are increased after experimental traumatic brain injury in the rat. J Neurotrauma 15:163–170. https://doi.org/10.1089/neu.1998.15.163

    Article  CAS  PubMed  Google Scholar 

  9. Björklund O, Shang M, Tonazzini I, Daré E, Fredholm BB (2008) Adenosine A1 and A3 receptors protect astrocytes from hypoxic damage. Eur J Pharmacol 596:6–13. https://doi.org/10.1016/j.ejphar.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  10. Borrmann T, Hinz S, Bertarelli DC, Li W, Florin NC, Scheiff AB, Müller CE (2009) 1-Alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J Med Chem 52:3994–4006. https://doi.org/10.1021/jm900413e

    Article  CAS  PubMed  Google Scholar 

  11. Bozdemir E, Vigil FA, Chun SH, Espinoza L, Bugay V, Khoury SM, Holstein DM, Stoja A, Lozano D, Tunca C, Sprague SM, Cavazos JE, Brenner R, Liston TE, Shapiro MS, Lechleiter JD (2021) Neuroprotective roles of the adenosine A3 receptor agonist AST-004 in mouse model of traumatic brain injury. Neurotherapeutics 18:2707–2721. https://doi.org/10.1007/s13311-021-01113-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brand A, Vissiennon Z, Eschke D, Nieber K (2001) Adenosine A1 and A3 receptors mediate inhibition of synaptic transmission in rat cortical neurons. Neuropharmacology 40:85–95. https://doi.org/10.1016/s0028-3908(00)00117-9

    Article  CAS  PubMed  Google Scholar 

  13. Chen Z, Xiong C, Pancyr C, Stockwell J, Walz W, Cayabyab FS (2014) Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK. J Neurosci 34:9621–9643. https://doi.org/10.1523/JNEUROSCI.3991-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi IY, Lee JC, Ju C, Hwang S, Cho GS, Lee HW, Choi WJ, Jeong LS, Kim WK (2011) A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats. Am J Pathol 179:2042–2052. https://doi.org/10.1016/j.ajpath.2011.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cinalli AR, Guarracino JF, Fernandez V, Roquel LI, Losavio AS (2013) Inosine induces presynaptic inhibition of acetylcholine release by activation of A3 adenosine receptors at the mouse neuromuscular junction. Br J Pharmacol 169:1810–1823. https://doi.org/10.1111/bph.12262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Costenla AR, Lopes LV, de Mendonça A, Ribeiro JA (2011) A functional role for adenosine A3 receptors: modulation of synaptic plasticity in the rat hippocampus. Neurosci Lett 302:53–57. https://doi.org/10.1016/s0304-3940(01)01633-0

    Article  Google Scholar 

  17. Cunha RA (1997) Release of ATP and adenosine and formation of extracellular adenosine in the hippocampus. In: Okada Y (ed) The role of Adenosine in the Nervous System. Elsevier, Amsterdam, pp 135–142

    Google Scholar 

  18. Cunha RA (2016) How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 139:1019–1055. https://doi.org/10.1111/jnc.13724

    Article  CAS  PubMed  Google Scholar 

  19. Cunha RA, Johansson B, van der Ploeg I, Sebastião AM, Ribeiro JA, Fredholm BB (1994) Evidence for functionally important adenosine A2a receptors in the rat hippocampus. Brain Res 649:208–216. https://doi.org/10.1016/0006-8993(94)91066-9

    Article  CAS  PubMed  Google Scholar 

  20. Dachir S, Shabashov D, Trembovler V, Alexandrovich AG, Benowitz LI, Shohami E (2014) Inosine improves functional recovery after experimental traumatic brain injury. Brain Res 1555:78–88. https://doi.org/10.1016/j.brainres.2014.01.044

    Article  CAS  PubMed  Google Scholar 

  21. Dale N, Pearson T, Frenguelli BG (2000) Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. J Physiol 526:143–155. https://doi.org/10.1111/j.1469-7793.2000.00143.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Doyle C, Cristofaro V, Sack BS, Lukianov SN, Schäfer M, Chung YG, Sullivan MP, Adam RM (2017) Inosine attenuates spontaneous activity in the rat neurogenic bladder through an A2B pathway. Sci Rep 7:44416. https://doi.org/10.1038/srep44416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dunwiddie TV, Diao L (1994) Extracellular adenosine concentrations in hippocampal brain slices and the tonic inhibitory modulation of evoked excitatory responses. J Pharmacol Exp Ther 268:537–545

    CAS  PubMed  Google Scholar 

  24. Dunwiddie TV, Diao L, Kim HO, Jiang JL, Jacobson KA (1997) Activation of hippocampal adenosine A3 receptors produces a desensitization of A1 receptor-mediated responses in rat hippocampus. J Neurosci 17:607–614. https://doi.org/10.1523/JNEUROSCI.17-02-00607.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. El-Shamarka MEA, Kozman MR, Messiha BAS (2020) The protective effect of inosine against rotenone-induced Parkinson’s disease in mice; role of oxido-nitrosative stress, ERK phosphorylation, and A2AR expression. Naunyn Schmiedebergs Arch Pharmacol 393:1041–1053. https://doi.org/10.1007/s00210-019-01804-1

    Article  CAS  PubMed  Google Scholar 

  26. Fedorova IM, Jacobson MA, Basile A, Jacobson KA (2003) Behavioral characterization of mice lacking the A3 adenosine receptor: sensitivity to hypoxic neurodegeneration. Cell Mol Neurobiol 23:431–447. https://doi.org/10.1023/a:1023601007518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ferré S, Ciruela F (2019) Functional and neuroprotective role of striatal adenosine A2A receptor heterotetramers. J Caffeine Adenosine Res 9:89–97. https://doi.org/10.1089/caff.2019.0008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fredholm BB, Irenius E, Kull B, Schulte G (2001) Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 61:443–448. https://doi.org/10.1016/s0006-2952(00)00570-0

    Article  CAS  PubMed  Google Scholar 

  29. Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270. https://doi.org/10.1016/S0074-7742(05)63007-3

    Article  CAS  PubMed  Google Scholar 

  30. Ganzella M, Faraco RB, Almeida RF, Fernandes VF, Souza DO (2011) Intracerebroventricular administration of inosine is anticonvulsant against quinolinic acid-induced seizures in mice: an effect independent of benzodiazepine and adenosine receptors. Pharmacol Biochem Behav 100:271–274. https://doi.org/10.1016/j.pbb.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  31. Gao Z, Li BS, Day YJ, Linden J (2001) A3 adenosine receptor activation triggers phosphorylation of protein kinase B and protects rat basophilic leukemia 2H3 mast cells from apoptosis. Mol Pharmacol 59:76–82. https://doi.org/10.1124/mol.59.1.76

    Article  CAS  PubMed  Google Scholar 

  32. Gessi S, Varani K, Merighi S, Cattabriga E, Avitabile A, Gavioli R, Fortini C, Leung E, Mac Lennan S, Borea PA (2004) Expression of A3 adenosine receptors in human lymphocytes: up-regulation in T cell activation. Mol Pharmacol 65:711–719. https://doi.org/10.1124/mol.65.3.711

    Article  CAS  PubMed  Google Scholar 

  33. Gomez G, Sitkovsky MV (2003) Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood 102:4472–4478. https://doi.org/10.1182/blood-2002-11-3624

    Article  CAS  PubMed  Google Scholar 

  34. Gonçalves FQ, Pires J, Pliassova A, Beleza R, Lemos C, Marques JM, Rodrigues RJ, Canas PM, Köfalvi A, Cunha RA, Rial D (2015) Adenosine A2b receptors control A1 receptor-mediated inhibition of synaptic transmission in the mouse hippocampus. Eur J Neurosci 41:878–888. https://doi.org/10.1111/ejn.12851

    Article  PubMed  Google Scholar 

  35. Guinzberg R, Cortés D, Díaz-Cruz A, Riveros-Rosas H, Villalobos-Molina R, Piña E (2006) Inosine released after hypoxia activates hepatic glucose liberation through A3 adenosine receptors. Am J Physiol Endocrinol Metab 290:E940–E951. https://doi.org/10.1152/ajpendo.00173.2005

    Article  CAS  PubMed  Google Scholar 

  36. Hammarberg C, Schulte G, Fredholm BB (2003) Evidence for functional adenosine A3 receptors in microglia cells. J Neurochem 86:1051–1054. https://doi.org/10.1046/j.1471-4159.2003.01919.x

    Article  CAS  PubMed  Google Scholar 

  37. Jin X, Shepherd RK, Duling BR, Linden J (1997) Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J Clin Invest 100:2849–2857. https://doi.org/10.1172/JCI119833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaster MP, Budni J, Gazal M, Cunha MP, Santos AR, Rodrigues AL (2013) The antidepressant-like effect of inosine in the FST is associated with both adenosine A1 and A2A receptors. Purinergic Signal 9:481–486. https://doi.org/10.1007/s11302-013-9361-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kékesi KA, Kovács Z, Szilágyi N, Bobest M, Szikra T, Dobolyi A, Juhász G, Palkovits M (2006) Concentration of nucleosides and related compounds in cerebral and cerebellar cortical areas and white matter of the human brain. Cell Mol Neurobiol 26:833–844. https://doi.org/10.1007/s10571-006-9103-3

    Article  CAS  PubMed  Google Scholar 

  40. Li P, Li X, Deng P, Wang D, Bai X, Li Y, Luo C, Belguise K, Wang X, Wei X, Xia Z, Yi B (2020) Activation of adenosine A3 receptor reduces early brain injury by alleviating neuroinflammation after subarachnoid hemorrhage in elderly rats. Aging 13:694–713. https://doi.org/10.18632/aging.202178

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lohse MJ, Klotz KN, Schwabe U, Cristalli G, Vittori S, Grifantini M (1988) 2-Chloro-N6-cyclopentyladenosine: a highly selective agonist at A1 adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 337:687–689. https://doi.org/10.1007/BF00175797

    Article  CAS  PubMed  Google Scholar 

  42. Lopes LV, Cunha RA, Ribeiro JA (1999) Cross talk between A1 and A2A adenosine receptors in the hippocampus and cortex of young adult and old rats. J Neurophysiol 82:3196–3203. https://doi.org/10.1152/jn.1999.82.6.3196

    Article  CAS  PubMed  Google Scholar 

  43. Lopes LV, Cunha RA, Kull B, Fredholm BB, Ribeiro JA (2002) Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition. Neuroscience 112:319–329. https://doi.org/10.1016/s0306-4522(02)00080-5

    Article  CAS  PubMed  Google Scholar 

  44. Lopes LV, Rebola N, Costenla AR, Halldner L, Jacobson MA, Oliveira CR, Richardson PJ, Fredholm BB, Ribeiro JA, Cunha RA (2003) Adenosine A3 receptors in the rat hippocampus: lack of interaction with A1 receptors. Drug Dev Res 58:428–438. https://doi.org/10.1002/ddr.10188

    Article  CAS  Google Scholar 

  45. Lopes LV, Halldner L, Rebola N, Johansson B, Ledent C, Chen JF, Fredholm BB, Cunha RA (2004) Binding of the prototypical adenosine A2A receptor agonist CGS 21680 to the cerebral cortex of adenosine A1 and A2A receptor knockout mice. Br J Pharmacol 141:1006–1014. https://doi.org/10.1038/sj.bjp.0705692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lopes JP, Pliássova A, Cunha RA (2019) The physiological effects of caffeine on synaptic transmission and plasticity in the mouse hippocampus selectively depend on adenosine A1 and A2A receptors. Biochem Pharmacol 166:313–321. https://doi.org/10.1016/j.bcp.2019.06.008

    Article  CAS  PubMed  Google Scholar 

  47. Lorenzen A, Nitsch-Kirsch M, Vogt H, Schwabe U (1993) Characterization of membrane-bound and solubilized high-affinity binding sites for 5′-N-ethylcarboxamido[3H]adenosine from bovine cerebral cortex. J Neurochem 60:745–751. https://doi.org/10.1111/j.1471-4159.1993.tb03210.x

    Article  CAS  PubMed  Google Scholar 

  48. Maggi L, Trettel F, Scianni M, Bertollini C, Eusebi F, Fredholm BB, Limatola C (2009) LTP impairment by fractalkine/CX3CL1 in mouse hippocampus is mediated through the activity of adenosine receptor type 3 (A3R). J Neuroimmunol 215:36–42. https://doi.org/10.1016/j.jneuroim.2009.07.016

    Article  CAS  PubMed  Google Scholar 

  49. Matejuk A, Ransohoff RM (2020) Crosstalk between astrocytes and microglia: an overview. Front Immunol 11:1416. https://doi.org/10.3389/fimmu.2020.01416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Müller CE (2003) Medicinal chemistry of adenosine A3 receptor ligands. Curr Top Med Chem 3:445–462. https://doi.org/10.2174/1568026033392174

    Article  PubMed  Google Scholar 

  51. Müller CE, Diekmann M, Thorand M, Ozola V (2002) [3H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1–i]-purin-5-one ([3H]PSB-11), a novel high-affinity antagonist radioligand for human A3 adenosine receptors. Bioorg Med Chem Lett 12:501–503. https://doi.org/10.1016/s0960-894x(01)00785-5

    Article  PubMed  Google Scholar 

  52. Muto J, Lee H, Lee H, Uwaya A, Park J, Nakajima S, Nagata K, Ohno M, Ohsawa I, Mikami T (2014) Oral administration of inosine produces antidepressant-like effects in mice. Sci Rep 4:4199. https://doi.org/10.1038/srep04199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nascimento FP, Macedo-Júnior SJ, Pamplona FA, Luiz-Cerutti M, Córdova MM, Constantino L, Tasca CI, Dutra RC, Calixto JB, Reid A, Sawynok J, Santos AR (2015) Adenosine A1 receptor-dependent antinociception induced by inosine in mice: pharmacological, genetic and biochemical aspects. Mol Neurobiol 51:1368–1378. https://doi.org/10.1007/s12035-014-8815-5

    Article  CAS  PubMed  Google Scholar 

  54. Parkinson FE, Damaraju VL, Graham K, Yao SY, Baldwin SA, Cass CE, Young JD (2011) Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr Top Med Chem 11:948–972. https://doi.org/10.2174/156802611795347582

    Article  CAS  PubMed  Google Scholar 

  55. Phillis JW, Walter GA, O’Regan MH, Stair RE (1987) Increases in cerebral cortical perfusate adenosine and inosine concentrations during hypoxia and ischemia. J Cereb Blood Flow Metab 7:679–686. https://doi.org/10.1038/jcbfm.1987.122

    Article  CAS  PubMed  Google Scholar 

  56. Ragazzi E, Wu SN, Shryock J, Belardinelli L (1991) Electrophysiological and receptor binding studies to assess activation of the cardiac adenosine receptor by adenine nucleotides. Circ Res 68:1035–1044. https://doi.org/10.1161/01.res.68.4.1035

    Article  CAS  PubMed  Google Scholar 

  57. Rebola N, Porciúncula LO, Lopes LV, Oliveira CR, Soares-da-Silva P, Cunha RA (2005) Long-term effect of convulsive behavior on the density of adenosine A1 and A2A receptors in the rat cerebral cortex. Epilepsia 46(Suppl 5):159–165. https://doi.org/10.1111/j.1528-1167.2005.01026.x

    Article  CAS  PubMed  Google Scholar 

  58. Rebola N, Lujan R, Cunha RA, Mulle C (2008) Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57:121–134. https://doi.org/10.1016/j.neuron.2007.11.023

    Article  CAS  PubMed  Google Scholar 

  59. Rosito M, Deflorio C, Limatola C, Trettel F (2012) CXCL16 orchestrates adenosine A3 receptor and MCP-1/CCL2 activity to protect neurons from excitotoxic cell death in the CNS. J Neurosci 32:3154–3163. https://doi.org/10.1523/JNEUROSCI.4046-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ruhal P, Dhingra D (2018) Inosine improves cognitive function and decreases aging-induced oxidative stress and neuroinflammation in aged female rats. Inflammopharmacology 26:1317–1329. https://doi.org/10.1007/s10787-018-0476-y

    Article  CAS  PubMed  Google Scholar 

  61. Sebastião AM, Cunha RA, de Mendonça A, Ribeiro JA (2000) Modification of adenosine modulation of synaptic transmission in the hippocampus of aged rats. Br J Pharmacol 131:1629–1634. https://doi.org/10.1038/sj.bjp.0703736

    Article  PubMed  PubMed Central  Google Scholar 

  62. Shen H, Chen GJ, Harvey BK, Bickford PC, Wang Y (2005) Inosine reduces ischemic brain injury in rats. Stroke 36:654–659. https://doi.org/10.1161/01.STR.0000155747.15679.04

    Article  CAS  PubMed  Google Scholar 

  63. Teixeira FC, de Mattos BDS, Mello JE, Cardoso J, Spohr L, Luduvico KP, Soares MSP, Carvalho FB, Gutierres JM, Oliveira Campello Felix A, Stefanello FM, Spanevello RM (2022) Protective effects of inosine on memory consolidation in a rat model of scopolamine-induced cognitive impairment: involvement of cholinergic signaling, redox status, and ion pump activities. Neurochem Res 47:446–460. https://doi.org/10.1007/s11064-021-03460-5

    Article  CAS  PubMed  Google Scholar 

  64. Tescarollo FC, Rombo DM, DeLiberto LK, Fedele DE, Alharfoush E, Tomé ÂR, Cunha RA, Sebastião AM, Boison D (2020) Role of adenosine in epilepsy and seizures. J Caffeine Adenosine Res 10:45–60. https://doi.org/10.1089/caff.2019.0022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tilley SL, Wagoner VA, Salvatore CA, Jacobson MA, Koller BH (2000) Adenosine and inosine increase cutaneous vasopermeability by activating A3 receptors on mast cells. J Clin Invest 105:361–367. https://doi.org/10.1172/JCI8253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Von Lubitz DK, Lin RC, Boyd M, Bischofberger N, Jacobson KA (1999) Chronic administration of adenosine A3 receptor agonist and cerebral ischemia: neuronal and glial effects. Eur J Pharmacol 367:157–163. https://doi.org/10.1016/s0014-2999(98)00977-7

    Article  Google Scholar 

  67. Waites CL, Garner CC (2011) Presynaptic function in health and disease. Trends Neurosci 34:326–337. https://doi.org/10.1016/j.tins.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  68. Welihinda AA, Kaur M, Greene K, Zhai Y, Amento EP (2016) The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cell Signal 28:552–560. https://doi.org/10.1016/j.cellsig.2016.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu PH, Phillis JW, Balls K, Rinaldi B (1980) Specific binding of 2-[3H]chloroadenosine to rat brain cortical membranes. Can J Physiol Pharmacol 58:576–579. https://doi.org/10.1139/y80-096

    Article  CAS  PubMed  Google Scholar 

  70. Xiao C, Liu N, Jacobson KA, Gavrilova O, Reitman ML (2019) Physiology and effects of nucleosides in mice lacking all four adenosine receptors. PLoS Biol 17:e3000161. https://doi.org/10.1371/journal.pbio.3000161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ribeiro JA, Sebastião AM (1987) On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction. J Physiol 384:571–585. https://doi.org/10.1113/jphysiol.1987.sp016470

Download references

Funding

This study was supported by La Caixa Foundation (HP17/00523), Centro 2020 (CENTRO-01–0145-FEDER-000008: BrainHealth2020 and CENTRO-01–0246-FEDER-000010), FCT (POCI-01–0145-FEDER-03127, UIDB/04539/2020, and IF/01492/2015), and Deutsche Forschungsgemeinschaft (FOR2685, SFB1328).

Author information

Authors and Affiliations

Authors

Contributions

P. V., J. P. L., and C. R. L. carried out the electrophysiological experiments and analyzed the data; S. H. and C. V. carried out the receptor binding studies and analyzed the data; and J. P. L., R. A. C., and C. E. M. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Rodrigo A. Cunha.

Ethics declarations

Ethics approval

This study was approved by the ORBEA_128_2015/04122015 and certified by Direção Geral de Alimentação e Veterinária (DGAV; 0421/000/000/2016 Ref. 014420).

Conflict of interest

RAC is a scientific consultant for the Institute for Scientific Information on Coffee (ISIC). All other authors declare no conflict of interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valada, P., Hinz, S., Vielmuth, C. et al. The impact of inosine on hippocampal synaptic transmission and plasticity involves the release of adenosine through equilibrative nucleoside transporters rather than the direct activation of adenosine receptors. Purinergic Signalling 19, 451–461 (2023). https://doi.org/10.1007/s11302-022-09899-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-022-09899-7

Keywords

Navigation