Skip to main content
Log in

Identification of Ceramide Binding Proteins in Neuronal Cells: A Critical Point of View

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Much discussion has centered on the biochemical mechanism by which ceramide is produced and functions as a signalling molecule in cells. To identify proteins involved in ceramide signalling, we synthesized a radioactively labelled ceramide analogue equipped with a photosensitive group: N-(p-trifluoromethyl-diazirinyl)phenyl-ethyl-2-[35S]-2-thioacetyl-d-erythro-C18-sphingosine ([35S]-TDS-ceramide). This compound was then employed in photo-affinity labelling experiments in primary cultured cerebellar neurons. Due to the hydrophobic nature of the compound, most of the cell-associated radioactivity was recovered in the lipid fraction while only about 0.1% of radioactivity was photocoupled to proteins. In order to improve protein labelling the cytosolic fraction of rapidly growing human neuroblastoma cells (SH-SY5Y) was isolated and subjected to ceramide affinity chromatography prior to photo-affinity labelling. Following electrophoresis proteins photocoupled to ceramide were identified by MALDI mass spectrometry in combination with tryptic digestion and turned out to be either cytoskeletal or stress proteins that are highly abundant in cytosol and contain at least one hydrophobic domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hannun, Y. A. 1996. Functions of ceramide in coordinating cellular responses to stress. Science 274:1855-1859.

    Google Scholar 

  2. Hannun, Y. A. and Luberto, C. 2000. Ceramide in the eukaryotic stress response. Trends Cell Biol. 10:73-80.

    Google Scholar 

  3. Dbaibo, G. S., Perry, D. K., Gamard C. J., Platt, R., Poirier, G. G., Obeid, L. M., and Hannun, Y. A. 1997. Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-alpha: CrmA and Bcl-2 target distinct components in the apoptotic pathway. J. Exp. Med. 185:481-490.

    Google Scholar 

  4. Susin, S. A., Zamzami, N., Castedo, M., Daugas, E., Wang, H. G., Geley, S., Fassy, F., Reed, J. C., and Kroemer, G. 1997. The central executioner of apoptosis: Multiple connections between protease activation and mitochondria in Fas/APO-1/CD95-and ceramide-induced apoptosis. J. Exp. Med. 186:25-37.

    Google Scholar 

  5. Lee, J. Y., Hannun, Y. A., and Obeid, L. M. 1996. Ceramide inactivates protein kinase Ca. J. Biol. Chem. 271:13169-13174.

    Google Scholar 

  6. Jung, E. M., Griner, R. D., Mann-Blakeney, R., and Bollag, W. B. 1998. A potential role of ceramide in the regulation of mouse epidermal keratinocyte proliferation and differentiation. J. Invest. Dermatol. 110:318-323.

    Google Scholar 

  7. Furuya, S., Mitoma, J., Makino, A., and Hirabayashi, Y. 1998. Ceramide and its interconvertible metabolite sphingosine function as indispensable lipid factors involved in survival and dendritic differentiation of cerebellar Purkinje cells. J. Neurochem. 71:366-377.

    Google Scholar 

  8. Dobrowsky, R. T., Kamibayashi, C., Mumby, M. C., and Hannun, Y. A. 1993. Ceramide activates heterotrimeric protein phosphatase 2A. J. Biol. Chem. 268:15523-15530.

    Google Scholar 

  9. Galadari, S., Kishikawa, K., Kamibayashi, C., Mumby, M. C., and Hannun, Y. A. 1998. Purification and characterization of ceramide-activated protein phosphatases. Biochemistry 37:11232-11238.

    Google Scholar 

  10. Zhang, Y., Yao, B., Delikat, S., Bayoumy, S., Lin, X.-H., Basu, S., McGinley, M., Chan-Hui, P.-Y., Lichenstein, H., and Kolesnick R. 1997. Kinase suppressor of Ras is ceramideactivated protein kinase. Cell 68:63-72.

    Google Scholar 

  11. Müller, G., Ayoub, M., Storz, P., Rennecke, J., Fabbro, D., and Pfizenmaier, K. 1995. PKCξ is a molecular switch in signal transduction of TNFα bifunctionally regulated by ceramide and arachidonic acid. EMBO J. 14:1961-1996.

    Google Scholar 

  12. Huwiler, A., Fabbro, D., and Pfeilschifter, J. 1998. Selective ceramide binding to protein kinase C-α and-δ isoenzymes in renal mesangial cells. Biochemistry 37:14556-14562.

    Google Scholar 

  13. Huwiler, A., Brunner, J., Hummel, R., Vervoordeldonk, M., Stabel, S., van den Bosch, H., and Pfeilschifter, J. 1996. Ceramidebinding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc. Natl. Acad. Sci. USA 93:6959-6963.

    Google Scholar 

  14. Huwiler, A., Johannsen, B., Skarstad, A., and Pfeilschifter, J. 2001. Ceramide binds to the CaLB domain of cytosolic phospholipase A2 and facilitates its membrane docking and arachidonic acid release. FASEB J. 15:7-9.

    Google Scholar 

  15. Heinrich, M., Wickel, M., Schneider-Brachert, W., Sandberg, C., Gahr, J., Schwandner, R., Weber, T., Brunner, J., Krönke, M., and Schütze, S. 1999. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 18:5252-5263.

    Google Scholar 

  16. Brunner, J. 1993. New photolabeling and crosslinking methods. Annu. Rev. Biochem. 62:483-514.

    Google Scholar 

  17. Schütze, S., Wickel, M., Heinrich, M., Winoto-Morbach, S., Weber, T., Brunner, J., and Krönke, M. 2000. Use of affinity chromatography and TID-ceramide photo-affinity labeling for detection of ceramide-binding proteins. Meth. Enzymol. 312:429-438.

    Google Scholar 

  18. Herget, T., Esdar, C., Oehrlein, S. A., Heinrich, M., Schütze, S., Maelicke, A., and van Echten-Deckert, G. 2000. Production of ceramides causes apoptosis during early neural differentiation in vitro. J. Biol. Chem. 275:30344-30354.

    Google Scholar 

  19. Bieberich, E., MacKinnon, S., Silva, J., and Yu, R. K. 2001. Regulation of apoptosis during neuronal differentiation by ceramide and b-series complex gangliosides. J. Biol. Chem. 276:44396-44404.

    Google Scholar 

  20. Brann, A. B., Tcherpakov, M., Williams, I. M., Futerman, A. H., and Fainzilber, M. 2002. NGF-induced p75-mediated death of cultured hippocampal neurons is age-dependent and transduced through ceramide generated by neutral sphingomyelinase. J. Biol. Chem., 277:9812-9818.

    Google Scholar 

  21. Taniwaki, T., Yamada, T., Asahara, H., Ohyagi, Y., and Kira, J. 1999. Ceramide induces apoptosis to immature cerebellar granule cells in culture. J. Neurochem. 24:685-690.

    Google Scholar 

  22. Brugg, B., Michel, P. P., Agid, Y., and Ruberg, M. 1996. Ceramide induces apoptosis in cultured mesencephalic neurons. J. Neurochem. 66:733-739.

    Google Scholar 

  23. van Echten-Deckert, G., Giannis, A., Schwarz, A., Futerman, A., and Sandhoff, K. 1998. 1-Methylthiodihydroceramide, a novel analog of dihydroceramide, stimulates sphinganine degradation resulting in a decreased de novo sphingolipid biosynthesis. J. Biol. Chem. 273:1184-1191.

    Google Scholar 

  24. Zimmermann, P. and Schmidt, R. R. 1988. Synthesis of erythro-sphingosines via their azido derivatives. Liebigs Ann. Chem. 663-667.

  25. Brenner-Weiß, G., Giannis, A., and Sandhoff, K. 1992. Synthesis of potential inhibitors of the glycosphingolipid biosynthesis. Tetrahedron 48:5855-5860.

    Google Scholar 

  26. Brunner, J., Senn, H., and Richards, F. M. 1980. 3-Trifluoromethyl-3-phenyldiazirine. J. Biol. Chem. 255:3313-3318.

    Google Scholar 

  27. Nasal, M. 1983. 4-(1-Azi-2,2,2,-trifluoroethyl)benzoic acid, a highly photolabile carbene generating label readily fixable to biochemical agents. Liebigs Ann. Chem. 1510-1523.

  28. Rebhan, M., Vacun, G., Bayreuther, K., and Rösner, H. 1994. Altered ganglioside expression by SH-SY5Y cells upon retinoic acid-induced neuronal differentiation. Neuroreport. 5, 941-944.

    Google Scholar 

  29. Schägger, H. and Jagow, G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from, 1 to 100 kDa. Anal. Biochem. 166: 368-379.

    Google Scholar 

  30. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68:850-858.

    Google Scholar 

  31. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.

    Google Scholar 

  32. Venkataraman, K. and Futerman, A. H. 2000. Ceramide as a second messanger: Sticky solutions to sticky problems. Trends Cell Biol. 10:408-412.

    Google Scholar 

  33. van Echten, G., Birk, R., Brenner-Weiß, G., Schmidt, R. R., and Sandhoff, K. 1990. Modulation of sphingolipid biosynthesis in primary cultured neurons by long chain bases. J. Biol. Chem. 265:9333-9339.

    Google Scholar 

  34. Pütz, U. and Schwarzmann, G. 1995. Golgi staining by two fluorescent ceramide analogues in cultured fibroblasts requires metabolism. Eur. J. Cell Biol. 68:113-121.

    Google Scholar 

  35. Ogretmen, B., Pettus, B. J., Rossi, M. J., Wood, R., Usta, J., Szulc, Z., Bielawska, A., Obeid, L. M., and Hannun, Y. A. 2002. Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line: Role for endogenous ceramide in mediating the action of exogenous ceramide. J. Biol. Chem. 277:12960-12969.

    Google Scholar 

  36. Mathias, S., Pena, L. A., and Kolesnick, R. N. 1998. Signal transduction of stress via ceramide. Biochem. J. 335:465-480.

    Google Scholar 

  37. Slomiany, A., Grzelinska, E., Kasinathan, C., Yamaki, K., Palecz, D., Slomiany, B. A., and Slomiany, B. L. 1992. Biogenesis of endoplasmic reticulum transport vesicles transferring gastric apomucin from ER to Golgi. Exp. Cell. Res. 201: 321-329.

    Google Scholar 

  38. van Meer, G. 1989. Lipid traffic in animal cells. Annu. Rev. Cell Biol. 5:247-275.

    Google Scholar 

  39. Collins, R. N. and Warren, G. 1992. Sphingolipid transport in mitotic HeLa cells. J. Biol. Chem. 267:24906-24911.

    Google Scholar 

  40. Moreau, P., Cassagne, C., Keenan, T. W., and Morre, D. J. 1993. Ceramide excluded from cell-free vesicular lipid transfer from endoplasmic reticulum to Golgi apparatus. Evidence for lipid sorting. Biochim. Biophys. Acta 1146:9-16.

    Google Scholar 

  41. Kok, J. W., Babia, T., Klappe, K., Egea, G., and Hoeckstra, D. 1998. Ceramide transport from endoplasmic reticulum to Golgi apparatus is not vesicle-mediated. Biochem. J. 333:779-786.

    Google Scholar 

  42. Mosser, D. D., Caron, A. W., Bouget, L., Denis-Larose, D., and Massie, B. 1997. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell Biol. 17: 5317-5327.

    Google Scholar 

  43. Buzzard, K. A., Giaccia, A. J., Killender, M., and Anderson, R. L. 1998. Heat shock protein 72 modulates pathways of stressinduced apoptosis. J. Biol. Chem. 273:17147-17153.

    Google Scholar 

  44. Brar, B. K., Stephanou, A., Wagstaff, M. J., Coffin, R. S., Marber, M. S., Engelmann, G., and Latchman D. S. 1999. Heat shock proteins delivered with a virus vector can protect cardiac cells against apoptosis as well as against thermal or hypoxic stress. J. Mol. Cell. Cardiol. 31:135-146.

    Google Scholar 

  45. Ahn, J. H., Ko, Y. G., Park, W. Y., Kang, Y. S., Chung, H. Y., and Seo, J. S. 1999. Suppression of ceramide-mediated apoptosis by HSP70. Mol Cells 9:200-206.

    Google Scholar 

  46. Behrens, P., Brinkmann, U., Fogt, F., Wernert, N., and Wellmann, A. 2001. Implication of the proliferation and apoptosis associated CSE1L/CAS gene for breast cancer development. Anticancer Res. 21:2413-2417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsen, L., Betz, R., Schwarzmann, G. et al. Identification of Ceramide Binding Proteins in Neuronal Cells: A Critical Point of View. Neurochem Res 27, 717–727 (2002). https://doi.org/10.1023/A:1020288403626

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020288403626

Navigation