Skip to main content
Log in

A Three-Step Assay for Ceramide Synthase Activity Using a Fluorescent Substrate and HPLC

  • Methods
  • Published:
Lipids

Abstract

Ceramides are a family of signalling lipids with diverse physiological functions that include pro-differentiative and pro-apoptotic signalling. Ceramides and their derivatives are major constituents of myelin, maintaining neuronal conductivity. Ceramides are synthesized by ceramide synthases, of which there are six isoforms in mammals (CERS1–6). These enzymes catalyse the transfer of a variable length fatty acid to a sphingoid base, typically sphingosine or dihydrosphingosine. We previously reported a fluorescent thin-layer chromatography assay for ceramide synthase activity. In this paper we describe an improved fluorescent assay, using HPLC to achieve clear resolution of closely related ceramide species and to facilitate easy quantification of both product and substrate. Our HPLC assay protocol eliminates the need for a chloroform extraction step. Instead a simple three-step procedure is used: (1) reactions are run; (2) reactions are terminated with addition of methanol and centrifuged; (3) products are quantified with HPLC. HPLC resolution enables assays in which multiple fatty acid substrates are used in the same reaction. Using this approach, we show that CERS2 demonstrates a preference for the monounsaturated C24:1 fatty acid substrate compared to the saturated C24:0 substrate, potentially explaining why myelin is enriched in ceramides containing the monounsaturated form of very long chain fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CERS:

Ceramide synthase

CoA:

Co-enzyme A

HPLC:

High-performance liquid chromatography

TLC:

Thin-layer chromatography

References

  1. Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111(10):6387–6422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bieberich E (2008) Ceramide signaling in cancer and stem cells. Future Lipidol 3(3):273–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259(5102):1769–1771

    Article  CAS  PubMed  Google Scholar 

  4. Senkal CE, Ponnusamy S, Bielawski J, Hannun YA, Ogretmen B (2010) Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways. FASEB J 24(1):296–308

    Article  PubMed Central  PubMed  Google Scholar 

  5. Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam SP, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM, Bielawski J, Ogretmen B (2012) Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 8(10):831–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM (1995) Role of ceramide in cellular senescence. J Biol Chem 270(51):30701–30708

    Article  CAS  PubMed  Google Scholar 

  7. Ben-David O, Pewzner-Jung Y, Brenner O, Laviad EL, Kogot-Levin A, Weissberg I, Biton IE, Pienik R, Wang E, Kelly S, Alroy J, Raas-Rothschild A, Friedman A, Brugger B, Merrill AH Jr, Futerman AH (2011) Encephalopathy caused by ablation of very long acyl chain ceramide synthesis may be largely due to reduced galactosylceramide levels. J Biol Chem 286(34):30022–30033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ginkel C, Hartmann D, vom Dorp K, Zlomuzica A, Farwanah H, Eckhardt M, Sandhoff R, Degen J, Rabionet M, Dere E, Dormann P, Sandhoff K, Willecke K (2012) Ablation of neuronal ceramide synthase 1 in mice decreases ganglioside levels and expression of myelin-associated glycoprotein in oligodendrocytes. J Biol Chem 287(50):41888–41902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Jennemann R, Rabionet M, Gorgas K, Epstein S, Dalpke A, Rothermel U, Bayerle A, van der Hoeven F, Imgrund S, Kirsch J, Nickel W, Willecke K, Riezman H, Grone HJ, Sandhoff R (2012) Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet 21(3):586–608

    Article  CAS  PubMed  Google Scholar 

  10. Chavez JA, Summers SA (2012) A ceramide-centric view of insulin resistance. Cell Metab 15(5):585–594

    Article  CAS  PubMed  Google Scholar 

  11. Haughey NJ, Bandaru VV, Bae M, Mattson MP (2010) Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis. Biochim Biophys Acta 1801(8):878–886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Don AS, Lim XY, Couttas TA (2014) Re-configuration of sphingolipid metabolism by oncogenic transformation. Biomolecules 4(1):315–353

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286(32):27855–27862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Park JW, Park WJ, Futerman AH (2014) Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim Biophys Acta 1841(5):671–681

    Article  CAS  PubMed  Google Scholar 

  15. Mizutani Y, Kihara A, Igarashi Y (2005) Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J 390(Pt 1):263–271

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Laviad EL, Albee L, Pankova-Kholmyansky I, Epstein S, Park H, Merrill AH Jr, Futerman AH (2008) Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J Biol Chem 283(9):5677–5684

    Article  CAS  PubMed  Google Scholar 

  17. Venkataraman K, Riebeling C, Bodennec J, Riezman H, Allegood JC, Sullards MC, Merrill AH Jr, Futerman AH (2002) Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J Biol Chem 277(38):35642–35649

    Article  CAS  PubMed  Google Scholar 

  18. Kim HJ, Qiao Q, Toop HD, Morris JC, Don AS (2012) A fluorescent assay for ceramide synthase activity. J Lipid Res 53(8):1701–1707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Abuhusain HJ, Matin A, Qiao Q, Shen H, Kain N, Day BW, Stringer BW, Daniels B, Laaksonen MA, Teo C, McDonald KL, Don AS (2013) A metabolic shift favouring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis. J Biol Chem 288(52):37355–37364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Merrill AH Jr, van Echten G, Wang E, Sandhoff K (1993) Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ. J Biol Chem 268(36):27299–27306

    CAS  PubMed  Google Scholar 

  21. Pewzner-Jung Y, Park H, Laviad EL, Silva LC, Lahiri S, Stiban J, Erez-Roman R, Brugger B, Sachsenheimer T, Wieland F, Prieto M, Merrill AH Jr, Futerman AH (2010) A critical role for ceramide synthase 2 in liver homeostasis: I. Alterations in lipid metabolic pathways. J Biol Chem 285(14):10902–10910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lahiri S, Lee H, Mesicek J, Fuks Z, Haimovitz-Friedman A, Kolesnick RN, Futerman AH (2007) Kinetic characterization of mammalian ceramide synthases: determination of Km values towards sphinganine. FEBS Lett 581(27):5289–5294

    Article  CAS  PubMed  Google Scholar 

  23. Berdyshev EV, Gorshkova I, Skobeleva A, Bittman R, Lu X, Dudek SM, Mirzapoiazova T, Garcia JGN, Natarajan V (2009) FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. J Biol Chem 284(9):5467–5477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Mullen TD, Spassieva S, Jenkins RW, Kitatani K, Bielawski J, Hannun YA, Obeid LM (2011) Selective knockdown of ceramide synthases reveals complex interregulation of sphingolipid metabolism. J Lipid Res 52(1):68–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. van Echten-Deckert G (2000) Sphingolipid extraction and analysis by thin-layer chromatography. Methods Enzymol 312:64–79

    Article  PubMed  Google Scholar 

  26. Sassa T, Suto S, Okayasu Y, Kihara A (2012) A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells. Biochim Biophys Acta 1821(7):1031–1037

    Article  CAS  PubMed  Google Scholar 

  27. Couttas TA, Kain N, Daniels B, Lim XY, Shepherd C, Kril J, Pickford R, Li H, Garner B, Don AS (2014) Loss of the neuroprotective factor sphingosine 1-phosphate early in Alzheimer’s disease pathogenesis. Acta Neuropathol Commun 2(1):9

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hejazi L, Wong JW, Cheng D, Proschogo N, Ebrahimi D, Garner B, Don AS (2011) Mass and relative elution time profiling: two-dimensional analysis of sphingolipids in Alzheimer’s disease brains. Biochem J 438(1):165–175

    Article  CAS  PubMed  Google Scholar 

  29. Becker I, Wang-Eckhardt L, Yaghootfam A, Gieselmann V, Eckhardt M (2008) Differential expression of (dihydro) ceramide synthases in mouse brain: oligodendrocyte-specific expression of CerS2/Lass2. Histochem Cell Biol 129(2):233–241

    Article  CAS  PubMed  Google Scholar 

  30. Hirschberg K, Rodger J, Futerman AH (1993) The long-chain sphingoid base of sphingolipids is acylated at the cytosolic surface of the endoplasmic reticulum in rat liver. Biochem J 290(Pt 3):751–757

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by National Health and Medical Research Council Grant APP1024966 (A.S.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony S. Don.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couttas, T.A., Lim, X.Y. & Don, A.S. A Three-Step Assay for Ceramide Synthase Activity Using a Fluorescent Substrate and HPLC. Lipids 50, 101–109 (2015). https://doi.org/10.1007/s11745-014-3969-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3969-5

Keywords

Navigation