Skip to main content
Log in

Structure of the Ductin Channel

  • Published:
Bioscience Reports

Abstract

Gap junctions appear to be essential components of metazoan animals providing a means of direct means of communication between neighboring cells. They are sieve-like structures which allow cell–cell movement of cytosolic solutes below 1000 MW. The major role of gap junctions would appear to be homeostatic giving rise to groups of cells which act as functional units. Ductin is the major core component of gap junctions and recent structural data shows it to be a four alpha-helical bundle which fits particularly well into a low resolution model of the gap junction channel. Ductin is also the main membrane component of the vacuolar H+-ATPase that is found in all eukaryotes and it seems likely that the gap junction channel first evolved as a housing for the rotating spindle of these proton pumps. Because ductin protrudes little from the membrane, other proteins are required to bring cell surfaces close enough together to form gap junctions. Such proteins may include connexins, a large family of proteins found in vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Revel, J.-P. and Karnovsky, M. J. (1967) Hexagonal arrays of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33:C7–C12

    Google Scholar 

  2. Weidmann, S. (1952) The electrical constants of Purkinje fibres. J. Physiol. 118:348–360

    Google Scholar 

  3. Furshpan, E. J. and Potter, D. D. (1959) Transmission at the giant motor synapses of the crayfish. J. Physiol. 145:289–235

    Google Scholar 

  4. Loewenstein, W. R. and Kanno, Y. (1964) Studies on the epithelial (gland) cell junction. I modification of surface membrane permeability. J. Cell Biol. 22:565–586

    Google Scholar 

  5. Benenedetti, E. L. and Emmelot, P. (1968) Hexagonal array of subunits in tight junctions separated from isolated rat liver plasma membranes. J. Cell Biol. 38:15–24

    Google Scholar 

  6. Caspar, D. L. D., Goodenough, D. A., Makowski, L., and Phillips, W. C. (1977) Gap junction structures: I correlated electron microscopy and X-ray diffraction. J. Cell Biol. 74:605–628.

    Google Scholar 

  7. Makowski, L., Caspar, D. L. D., Phillips, W. C., and Goodenough, D. A. (1977) Gap junction structures: II analysis of X-ray diffraction data. J. Cell Biol. 74:629–645.

    Google Scholar 

  8. Unwin, P. N. T. and Ennis, P. D. (1984) Two configurations of a channel-forming membrane protein. Nature 307:609–613.

    Google Scholar 

  9. Hoh, J. H., Lal, R., John, S. A., Revel, J.-P., and Arnsdorf, M. F. (1991). Atomic force microscopy and dissection of gap junctions. Science 253:1405–1408.

    Google Scholar 

  10. Leitch, B. and M. E. Finbow (1990) The gap junction-like form of a vacuolar proton channel appears not to be an artefact of isolation: an immunocytochemical localization study. Exp Cell Res. 190:218–226.

    Google Scholar 

  11. Sikerwar, S. S., Downing, K. H., and Glaeser, R. M. (1991). Three-dimensional structure of an invertebrate intercellular communicating junction. J. Structur. Biol. 106:255–263.

    Google Scholar 

  12. Finbow, M. E. et al., (1992) Structure of a 16kD protein that has identity to the putative proton channel of the vacuolar H+-ATPase. Protein Eng 5:7–15.

    Google Scholar 

  13. Holzenburg, A., et al. (1993) Evidence for a common structure for a class of membrane channels, Euro J. Biochem. 213:21–30.

    Google Scholar 

  14. John, S. A., Saner, D., Pitts, J. D., Holzenburg, A., Finbow, M. E., and Lal, R. (1997) Atomic Force Microscopy of Arthropod Gap Junctions. J. Struct. Biol. 120:22–31.

    Google Scholar 

  15. Pitts, J. D. and Simms, J. W. (1977) The permeability of junctions between animal cells. Exp Cell Res. 104:153–163.

    Google Scholar 

  16. Finbow, M. E. and Pitts, J. D. (1980) Permeability of junctions between animal cells. Exp Cell Res. 13:1–13.

    Google Scholar 

  17. Goodenough, D. A., Goliger, J. A., and Paul, D. L. (1996) Connexins, Connexons, and Intercellular Communication Ann. Rev. Biochem. 65:475–502.

    Google Scholar 

  18. Finbow, M. E. and Meagher, L. (1992) Connexins and the vacuolar proteolipid-like 16-kDa protein are not directly associated with each other but may be components of similar or the same gap junctional complex. Exp Cell Res. 203:280–284.

    Google Scholar 

  19. Finbow, M. E. (1997) Vertebrate and Invertebrate Gap Junctions: A common molecular basis? Cell Biol. Int. 21:329–331.

    Google Scholar 

  20. Finbow, M. E. and Pitts, J. D. (1993) Is the gap junctional channel—the connexon—made of connexin or ductin? J. Cell Sci. 106:463–472.

    Google Scholar 

  21. Mandel, M., Moriyama, Y., Hulmes, J. D., Pan, Y.-C., Nelson, H., and Nelson, N. (1988). cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Proc. Natl. Acad. Sci. USA 85:5521–5524.

    Google Scholar 

  22. Finbow, M. E. and Harrison, M. A. (1997) The vacuolar H+-ATPase-a universal proton pump of eukaryotes. Biochem. J. 324:997–1712.

    Google Scholar 

  23. Boyer, P. D. (1997) The ATP synthase—a splendid molecular machine. Ann. Rev. Biochem. 66:717–749.

    Google Scholar 

  24. Stevens, T. H. and Forgac, M. (1997) Structure, function and regulation of the vacuolar (H+)-ATPase. Ann. Rev. Cell Dev. Biol. 13:779–808.

    Google Scholar 

  25. Girvin, M. E., Rastogi, V. K., Abidgaard, F., Markley, J. L., and Fillinghame, R. H. (1998) Solution structure of the transmembrane H+-transporting subunit c of the F 1 F 0 ATP synthase. Biochemistry 37:8817–8824.

    Google Scholar 

  26. Rahlfs, S. and Muller, V. (1997) Sequence of subunit c of the Na(+)-translocating F 1 F 0 ATPase of Acetobacterium woodii: proposal for determinants of Na+ specificity as revealed by sequence comparisons. FEBS Letts 404:269–271.

    Google Scholar 

  27. Hilario, E. and Gogarten, J. P. (1998) The Prokaryote-to-Eukaryote Transition Reflected in the Evolution of the V/F/A-ATPase Catalytic and Proteolipid Subunits. J. Mol. Evol. 46:703–715.

    Google Scholar 

  28. Finbow, M. E., John, S., Kam, E., Apps, D. K., and Pitts, J. D. (1993) Disposition and orientation of Ductin (DCCD reactive vacuolar H+-ATPase subunit) in mammalian membrane complexes. Exp Cell Res. 207:261–270.

    Google Scholar 

  29. Jones, P. C., Harrison, M. A., Kim, Y.-I., Finbow, M. E., and Findlay, J. B. C. (1995) The first putative transmembrane helix of the 16 kDa proteolipid lines a pore in the V 0 sector of the vacuolar H+-ATPase. Biochem. J., 312:9211–9218.

    Google Scholar 

  30. Hughes, G., Harrison, M. A., Kim, Y.-I., Griffiths, D. E., Finbow, M. E., and Findlay, J. B. C. (1996) Interaction of dibutylin-3-phydroxyflavone bromide with the 16 kDa proteolipid indicates the disposition of proton translocation sites of the vacuolar ATPase. Biochem. J., 317:425–431.

    Google Scholar 

  31. Dunlop, J., Jones, P. C., and Finbow, M. E. (1995) Membrane insertion and assembly of ductin: a polytopic channel with dual orientations. EMBO J. 14:3609–3616.

    Google Scholar 

  32. Phelan, P., Stebbings, L. A., Baines, R. A., Bacon, J. P., Davies, J. A., and Ford, C. (1998) Drosophila Shaking B protein forms gap junctions in paired Xenopus oocytes. Nature 391:181–184.

    Google Scholar 

  33. Hertzberg, E. L., Spray, D. C., and Bennett, M. V. L. (1985) Reduction of gap junctional conductance by micro-injection of antibodies to the 27-kDa liver gap junction polypeptide. Proc. Natl. Acad. Sci. USA 82:2412–2416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finbow, M.E., Pitts, J.D. Structure of the Ductin Channel. Biosci Rep 18, 287–297 (1998). https://doi.org/10.1023/A:1020205231507

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020205231507

Navigation