Skip to main content
Log in

In vitro reconstruction of full thickness human skin on a composite collagen material

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Rapid progress of in vitro techniques in the lastyears enabled the creation of organotypic skin cultures offering newpossibilities in wound treatment. Rebuilding of graft is one of the keyelementsof successful outcome of the procedure.In search for the best scaffold for organotypic skin culture, the novelcomposite xenogenic collagen based material with unique properties has beencreated and used to reconstitute full thickness human skin invitro. Based on our long established technology used for theproduction of collagen dressings for the treatment of burns, this novel,composite material offers excellent growth support of highly biodegradablespongy layer, combined with mechanical strength of collagen membrane. Themodulation of collagen properties was accomplished by consecutive treatmentwithhigh temperature and gamma irradiation. The use of the substrate enabled toobtain organotypic culture that resembles full thickness skin with fibroblastslayer and well-developed multilayer epithelium. Our new material offers easyhandling of obtained graft during surgery along with accelerated cell growth andcontrolled biodegradation of the culture support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell E.,Ehrlich H.P.,Buttle D.J. andNakatsuji T. 1981. A living tissue formed in vitro and accepted as a full thickness skin equivalent. Science 211: 1042–1054.

    Google Scholar 

  • Boyce S.T. 1998. Skin substitutes from cultured cells and collagen-GAG polymers. Med. Biol. Eng. Computing 36: 791–800.

    Google Scholar 

  • Brem H.,Balledux J.,Bloom T.,Kerstein M. andHollier L. 2000. Healing of diabetic foot ulcers and pressure ulcers with human skin equivalent: a paradigm in wound healing. Arch. Surg. 135: 627–634.

    Google Scholar 

  • Compton C.C. 1996. Cultured epithelial autografts for burn wound resurfacing: review of observations from an 11 year biopsy study. Wounds 8: 125–133.

    Google Scholar 

  • Compton C.C.,Butler C.E.,Yannas I.V.,Warland G. andOrgill D.P. 1998. Organised skin structure is regenerated in vivo from collagen-GAG matrices seeded with autologous keratinocytes. J. Inv. Dermatol. 110: 908–916.

    Google Scholar 

  • Contard P.,Bartel R.,Jacob L.,Perlish J.S.,Macdonald E.D.,Handler L. et al. 1993. Culturing keratinocytes and fibroblasts in a three dimensional mesh results in epidermal differentiation and formation of a basal lamina anchoring zone. J Inv Dermatol 100: 35–39.

    Google Scholar 

  • Cuono C.,Langdon R. andMcGuire J. 1986. Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet 1: 1123–1124.

    Google Scholar 

  • Damour O.,Augustin C. andBlack A.F. 1998. Application of reconstructed skin models in pharmaco-toxicological trials. Med. & Exp. Eng. & Computing 36: 825–832.

    Google Scholar 

  • Eaglstein W.H.,Iriondo M. andLaszlo K. 1995. A composite skin substitute (graftskin) for surgical wounds: a clinical experience. Dermatol. Surg. 21: 839–43.

    Google Scholar 

  • Falabella A.F.,Schachner L.,Valencia I.C. andEaglstein W. 1999. The use of tissue-engineered skin (Apligraf) to treat a newborn with epidermolysis bullosa. Arch. Dermatol. 135: 1219–1222.

    Google Scholar 

  • Falanga V.,Margolis D. andAlvarez O. 1998. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Arch. Dermatol. 134: 293–300.

    Google Scholar 

  • Freshney R.I. 1994. Disaggregation of the tissue and primary culture. In Culture of animal cells. John Wiley & Sons Inc., pp. 142–146.

  • Hansbrough J.F.,Morgan J.L.,Greenleaf G.E. andBartel R. 1993. Composite graft of human keratinocytes grown on a polyglactin mesh-cultured fibroblast dermal substitute function as a bilayered skin replacement ion full-thickness wounds on athymic mice. J. Burn Care Rehabil. 14: 485–494.

    Google Scholar 

  • Hefton J.M.,Caldwell D.,Biozes D.G.,Balin A.K. andCarter D.M. 1986. Grafting of skin ulcers with cultured autologous epidermal cells. J. Am. Acad. Dermatol. 14: 399–405.

    Google Scholar 

  • Hefton J.M.,Madden M.R.,Finkelstein J.L. andShires G.T. 1983. Grafting of burn patients with allografts of cultured epidermal cells. Lancet 2: 428–430.

    Google Scholar 

  • Kinsner A.,Sladowski D. andLesiak-Cyganowska E. 1998. full thickness human skin on resorbable collagen membrane Presentation on: Combined Meeting of EATB and EAMST, 10–12 September 1998. Turku, Finland, pp. 10–12.

  • Komender J. andLesiak-Cyganowska E. 1981. Preparation of collagen dressings. In: Komender J. (ed.), Przeszczepy biostatyczne Vol. 2. PZWL, Warszawa, pp. 85–91.

    Google Scholar 

  • Krejci N.C.,Cuono C.B.,Langdon R.C. andMcGuire J. 1991. In vitro reconstruction of skin; fibroblasts facilitate keratinocyte growth and differentiation on acellular reticular dermis. J. Inv. Dermatol. 97: 137–142.

    Google Scholar 

  • Leigh I.M.,Purkis P.E.,Navsaria H.A. andPhillips T.J. 1987. Treatment of chronic venous ulcers with sheets of cultured allogenic keratinocytes. Br. J. Dermatol. 117: 591–597.

    Google Scholar 

  • Lesiak-Cyganowska E.,Komender A. andKomender J. 1983. Immunogenicity of xenogenic collagen material sterilised by various methods. Acta Medica Polona 241: 43–46.

    Google Scholar 

  • Lesiak-Cyganowska E.,Fangrat A.,Sladowski D. andKomender J. 1995. Testing of collagen dressings as a substrate for in vitro cells growth. Pol. J. Immunol. 20: 430–433.

    Google Scholar 

  • Lesiak Cyganowska E.,Sladowski D.,Jankowska E. andKomender J. 2001. In vitro culture of human epithelial cells on a modified collagen support. Arch. Immun. Ther. Exp. 49: 253–259.

    Google Scholar 

  • Meana A.,Iglesias J.,Del Rio M.,Larcher F.,Madrigal B.,Fresno M.F. et al. 1998. Large surface of cultured epithelium obtained on a dermal matrix based on live fibroblast-containing fibrin glue. Burns 24: 621–630.

    Google Scholar 

  • Matouskova E.,Vogtova D. andKonigova R. 1993. A recombined skin composed of human keratinocytes cultured on cell-free pig dermis. Burns 19: 118–123.

    Google Scholar 

  • McCarthy M. 1996. Bio-engineered tissues move toward the clinic. The Lancet 348: 466.

    Google Scholar 

  • Murray J.C.,Stingl G.,Kleinman H.K.,Martin G.R. andKatz S.I. 1979. Epidermal cells adhere preferentially to type IV (basement membrane) collagen. J. Cell Biol. 80: 197–202.

    Google Scholar 

  • Myers S.R.,Grady J. andSoranzo C. 1997. A hyaluronic acid membrane delivery system for cultured keratinocytes: clinical take rates in the porcine keratodermal model. J. Burn Care Rehabil. 18: 218–218.

    Google Scholar 

  • Phillips T.J. 1998. New skin for old: developments in biological skin substitutes. Arch. Dermatol. 134: 344.

    Google Scholar 

  • Phillips T.J. 1999. Tissue-engineered skin: an alternative to split-thickness skin grafts. Arch. Dermatol. 135: 977–978.

    Google Scholar 

  • Prunieras M.,Regnier M. andSchlotter M. 1979. A new method to culture human epidermal cells on allogenic or xenogenic dermis: preparation of recombined grafts. Ann. Plast. Surg. 24: 357–362.

    Google Scholar 

  • Prunieras M.,Reigner M. andWoodley D. 1983. Methods for cultivation of keratinocytes with an air-liquid interface. J. Inv. Dermatol. 81: 28–33.

    Google Scholar 

  • Purdue G.F. 1997. Dermagraft-TC pivotal efficacy and safety study. J. Burn Care Rehabil. 18: S13–S14.

    Google Scholar 

  • Regnier M.,Prunieras M. andWoodley D. 1981. Growth and differentiation of adult human epidermal cells on dermal substrates. Front Matrix Biol. 9: 4–35.

    Google Scholar 

  • Rheinwald J.G. andGreen H. 1975. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinising colonies from single cells. Cell 6: 331.

    Google Scholar 

  • Rue L.W. III,Cioffi W.G.,McManus W.F. andPruitt B.A. Jr. 1993. Wound closure and outcome in extensively burned patients treated with cultured autologous keratinocytes. J. Trauma 34: 662–668.

    Google Scholar 

  • Sheridan R.L. andMoreno C. 2001. Skin substitutes in burn wounds. Burns 27: 92.

    Google Scholar 

  • Sliwowski A. andDziedzic-Goclawska A. 1976. Influence of gamma radiation on the solubility of collagen-derived membranes. Materia Medica Polona 8: 379–381.

    Google Scholar 

  • Tuan T.L.,Keller L.C.,Sun D.,Nimni M.E. andCheung D. 1994. Dermal fibroblasts activate keratinocyte outgrowth on collagen gels. J. Cell Sci. 107: 2285–2289.

    Google Scholar 

  • Valencia I.C.,Falabella A.F. andEaglstein W. 2000. Skin grafting. Dermatol. Clinic. 18: 521–532.

    Google Scholar 

  • van Dorp A.G.,Verhoeven M.C.,Koerten H.K.,van Blitterswijk C.A. andPonec M. 1999. Bilayered biodegradable poly-(ethyleneglycol)/polu(butylene terephtalate) copolymer (polyactive) as a substrate for human fibroblasts and keratinocytes. J. Biomed. Mat. Res. 47: 292–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinsner, A., Lesiak-Cyganowska, E. & Śladowski, D. In vitro reconstruction of full thickness human skin on a composite collagen material. Cell Tissue Banking 2, 165–171 (2001). https://doi.org/10.1023/A:1020196504392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020196504392

Navigation