Skip to main content
Log in

Microstructural and corrosion studies of Ti alloy (IMI 834) in acidic solutions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical polarization behaviour of a titanium alloy (IMI 834) was studied in different concentrations of aqueous and ethylene glycolic solutions of hydrochloric and phosphoric acid at 30 °C. The influence of furnace cooled (FC), air cooled (AC) and water quenched (WQ) heat treatments and microstructure on polarization behaviour was also studied. An active passive transition and a large range of passivity potential were observed in aqueous and glycolic solutions of the acids. The magnitudes of the critical current density (i c) and passive current density (i p) were higher for hydrochloric acid in comparison to phosphoric acid. Values of i c and i p were lower in ethylene glycol–hydrochloric acid up to 7 M and were higher above 7 M hydrochloric acid–ethylene glycol solutions as compared to the corresponding hydrochloric acid concentrations. However, these values were always lower in ethylene glycol–phosphoric acid than in phosphoric acid solutions. The microstructure of the alloy after solution treatment (1080 °C, 30 min; FC, AC and WQ) showed single phase transformed β structure. The increase in the cooling rate enhances the fineness of the β laths. The working electrode surface was examined by scanning electron microscopy (SEM) and scanning tunnelling microscopy (STM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Eylon, S. Fujishiro, P.J. Postans and F.H. Froes, J. Met. 1 (1984) 55–62.

    Google Scholar 

  2. A.A. Mazhar, F. El-Taib Heakel and A.G. Gad-Allah, Corrosion 44 (1988) 705.

    Google Scholar 

  3. S.M.A. Hosseini and V.B. Singh, Mater. Chem. Phys. 33 (1993) 63.

    Google Scholar 

  4. V.B. Singh and S.M.A. Hosseini, Corros. Sci. 34 (1993) 1723.

    Google Scholar 

  5. V.B. Singh and S.M.A. Hosseini, Indian J. Chem. Technol. 1 (1994) 287.

    Google Scholar 

  6. S.X. Yu, C.W. Brodrick, M.P. Ryan and J.R. Scully, J. Electrochem. Soc. 146 (1999) 4429.

    Google Scholar 

  7. R. Schutz, in D. Eylon, R. Boyer and D. Koss (Eds), ‘Beta Titanium Alloys in the 1990s', (Minerals, Metals and Materials Society, Warrendale PA, 1993), p. 75.

    Google Scholar 

  8. P. Marcus, Corros. Sci. 36 (1994) 2155.

    Google Scholar 

  9. T. Hurlen, H. Bentzen and S. Hornkjol, Electrochim. Acta 32 (1987) 1613.

    Google Scholar 

  10. J.A. Bardwell and M.C. McKurbre, Electrochim. Acta 36 (1991) 647.

    Google Scholar 

  11. C.V.D. Alkaine, L.M.M. De Souza and F.C. Nart, Corros. Sci. 34 (1993) 109.

    Google Scholar 

  12. V.B. Singh and S.M.A. Hosseini, J. Appl. Electrochem. 24 (1994) 250.

    Google Scholar 

  13. N.T. Thomas and K. Nobe, Corrosion 29 (1973) 188.

    Google Scholar 

  14. E.J. Kelly and H.R. Bronstein, J. Electrochem. Soc. 131 (1984) 2232.

    Google Scholar 

  15. A. Caprani and J.P. Prayre, Electrochim. Acta 24 (1979) 835.

    Google Scholar 

  16. C.K. Dyer and J.S.L. Leach, Electrochim. Acta 23 (1978) 1387.

    Google Scholar 

  17. D.J. Blackwood and L.M. Peter, Electrochim. Acta 33 (1988) 1143.

    Google Scholar 

  18. P.Y. Park, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hoshimoto, Corros. Sci. 38 (1996) 1649.

    Google Scholar 

  19. X. Li, E. Akiyama, H. 1-labazaki, A. Kawashima, K. Asami and K. Hoshimoto, Corros. Sci. 39 (1997) 935.

    Google Scholar 

  20. R. Otsuka, Sci. Papers IPRC 54 (1960) 97.

    Google Scholar 

  21. R.C. May, F.H. Beck and M.G. Fontana, ‘Stress Corrosion Cracking of Titanium Alloys’, The Ohio State University, NGL 36-008-051 Sept. (1971).

  22. T. Philips, P. Poople and L.L. Shreir, Corros. Sci. 12 (1972) 855.

    Google Scholar 

  23. A. Caprani, PhD thesis, University of Paris, CNRS A.0. 10 (1974) 1441.

  24. S.H. Weiman, Corrosion 22 (1966) 98.

    Google Scholar 

  25. N.T. Thomas and K. Nobe, J. Electrochem. Soc. 119 (1972) 1450.

    Google Scholar 

  26. R.D. Armstrong and R.E. Firman, J. Electroanal. Chem. 34 (1979) 391.

    Google Scholar 

  27. J.A. Harison and D.E. Williams, Electrochim. Acta 27 (1982) 891.

    Google Scholar 

  28. L. Garfias-Mesias, M.J. Alodan, P.L. James and W.H. Smyrl, J. Electrochem. Soc. 145 (1998) 2005.

    Google Scholar 

  29. O. Bastiansen and C. Finback, ‘Phosphorus and its Compounds’, Vol. 1 (Interscience, New York, 1958) p. 489.

    Google Scholar 

  30. A.A. Mazhar, M.M. Hefny, F. El-Taib Heakel and M.S. El-Basiouny, Brit. Corros. J. 8 (1983) 156.

    Google Scholar 

  31. M. Levy, Corrosion 23 (1967) 236.

    Google Scholar 

  32. H.H. Uhlig, Corrosion 19 (1963) 213t.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.B. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V., Gupta, A. Microstructural and corrosion studies of Ti alloy (IMI 834) in acidic solutions. Journal of Applied Electrochemistry 32, 795–803 (2002). https://doi.org/10.1023/A:1020170129275

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020170129275

Navigation