Skip to main content
Log in

Electrochemical study of thiourea and substituted thiourea adsorbates on polycrystalline platinum electrodes in aqueous sulfuric acid

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical response of adsorbates produced on polycrystalline Pt from thiourea, methyl thiourea, 1,3 dimethyl thiourea and tetramethyl thiourea dissolved in aqueous 0.5 M sulfuric acid are comparatively studied using electrochemical routines. The adsorption kinetics of thioureas on Pt follows an Elovich-type equation. Their saturation coverage, measured from the decrease in the H-atom electrosorption charge after correction for molecular size for steric effects, decreases as the size of the molecule producing adsorbates increases. Adsorption data fulfill the empirical Frumkin isotherm with a repulsive adsorbate–adsorbate lateral interaction term. Adsorbate electrooxidation starts at about 0.65 V vs SHE. The deprotonation of hydrogen-containing thioureas yields soluble products, their electrochemical behaviour being to some extent similar to that of formamidine disulfide. For E > 0.65 V vs SHE, the oxidation of thioureas can be described as complex processes in which intermediates compete with oxide layer formation on platinum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Pletcher and F. Walsh, 'Industrial Electrochemistry' (Chapmann & Hall, London, 1990).

    Google Scholar 

  2. D. Gabe, 'Principles of Metal Surface Treatment and Protection', (Pergamon, Oxford, 1978).

    Google Scholar 

  3. S. Mendez, G. Andreasen, P.L. Schilardi, M. Figueroa, L. Vázquez, R.C. Salvarezza and A.J. Arvia, Langmuir 14 (1998) 2515.

    Google Scholar 

  4. D.N. Upadhayay and V. Yegnaraman, Mat. Chem. Phys. 62 (2000) 247.

    Google Scholar 

  5. V.S. Martín, S. Sanllorente and S. Palmiero, Electrochim. Acta 44 (1998) 579.

    Google Scholar 

  6. L. Müller, G.N. Mansurov and O.A. Petrii, J. Electroanal. Chem. 96 (1979) 159.

    Google Scholar 

  7. O.E. Piro, R.C.V. Piatti, A.E. Bolzán, R.C. Salvarezza and A.J. Arvia, Acta Cryst. B56 (2000) 993.

    Google Scholar 

  8. A.E. Bolzán, I.B. Wakenge, R.C.V. Piatti, R.C. Salvarezza and A.J. Arvia, J. Electroanal. Chem. 501 (2001) 241.

    Google Scholar 

  9. A.E. Bolzán, I.B. Wakenge, R.C. Salvarezza and A.J. Arvia, J. Electroanal. Chem. 475 (1999) 181.

    Google Scholar 

  10. A.E. Bolza´ n, A.S.M.A. Haseeb, P.L. Schilardi, R.C.V. Piatti, R.C. Salvarezza and A.J. Arvia, J. Electroanal. Chem. 500 (2001) 533.

    Google Scholar 

  11. A.S.M.A. Haseeb, P.L. Schilardi, R.C.V. Piatti, A.E. Bolzán, R.C. Salvarezza and A.J. Arvia. J. Electroanal. Chem. 500 (2001) 543.

    Google Scholar 

  12. G. Horanyi, E.M. Rizmayer and P. Joó, J. Electroanal. Chem. 149 (1983) 221.

    Google Scholar 

  13. D. Papapanayiotou, R.N. Nuzzo and R.C. Alkire, J. Electrochem.Soc. 145 (1998) 3366.

    Google Scholar 

  14. G.M. Brown, G.A. Hope, D.P. Schweinsberg and P.M. Fredericks.J. Electroanal. Chem. 380 (1995) 161.

    Google Scholar 

  15. G.M. Brown and G.A. Hope, J. Electroanal. Chem. 413 (1996) 153.

    Google Scholar 

  16. A. Lukomska, S. Smolinski and J. Sobkowski, Electrochim. Acta 46 (2001) 3111.

    Google Scholar 

  17. B.G. Ateya, B.E. El-Anadouli and F.M. El-Nizamy, Corros. Sci. 24 (1984) 497.

    Google Scholar 

  18. Z.Q. Tian, W.H. Li, B.W. Mao and J.S. Gao, J. Electroanal.Chem. 379 (1994) 271.

    Google Scholar 

  19. J.O. Bockris, M.A. Habib and J.L. Carbajal, J. Electrochem. Soc. 131 (1984) 3032.

    Google Scholar 

  20. R. Holze and S. Shomaker, Electrochim. Acta 35 (1990) 613.

    Google Scholar 

  21. Z.Q. Tian, Y.Z. Lian and M. Fleischmann, Electrochim. Acta 35 (1990) 879.

    Google Scholar 

  22. R. Parsons and P. Symons, Trans. Faraday Soc. 64 (1968) 1077.

    Google Scholar 

  23. B.E. Conway, H. Angerstein-Kozlowska and H.P. Dhar, Electrochim.Acta 19 (1974) 455.

    Google Scholar 

  24. R. Woods, in A.J. Bard (Ed.), 'Electroanalytical Chemistry', Vol. 9 (Marcel Decker, New York, 1976), ch. 1, p. 98.

    Google Scholar 

  25. E.E. Farndon, F.C. Walsh and S.A. Campbell, J. App. Electrochem. 25 (1995) 574.

    Google Scholar 

  26. D.R. Turner and G.R. Johnson, J. Electrochem. Soc. 109 (1962)382.

    Google Scholar 

  27. E. Lamy-Pitara, L. Bencharif and J. Barbier, Electrochim. Acta 30 (1985) 971.

    Google Scholar 

  28. Y.E. Sung, W. Chrzanowski, A. Zolfaghari, J. Jerkiewicz and A. Wieckowski, J. Am. Chem Soc. 119 (1997) 194.

    Google Scholar 

  29. S.I. Zhdanov, in A.J. Bard (Ed.), 'Encyclopedia of Electrochemistry of the Elements', Vol. IV (Marcel Dekker, New York, 1975), ch. 6.

    Google Scholar 

  30. M. Yan, K. Liu and Z. Jiang, J. Electroanal. Chem. 408 (1996) 225.

    Google Scholar 

  31. P. Schilardi, A.E. Bolzán, R.C.V. Piatti, C. Gutiérrez and A.J.Arvia, in preparation.

  32. B. Beden, C. Lamy, N.R. de Tacconi and A.J. Arvia, Electrochim.Acta 35 (1990) 691.

    Google Scholar 

  33. V.P. Vasil'ev, V.I. Shorokhova, A.V. Katrovtseva and G.S. Lamakina, Elektrokhimiya 19 (1983) 453.

    Google Scholar 

  34. D.S. Tarbell, in N. Kharasch (Ed.), 'Organic Sulfur Compounds', Vol. 1 (Pergamon, New York, 1961), ch. X.

    Google Scholar 

  35. M. Fleischmann, I.R. Hill and G. Sundholm, J. Electroanal. Chem. 157 (1983) 359.

    Google Scholar 

  36. O. Azzaroni, B. Blum, R.C. Salvarezza and A.J. Arvia, J. Phys.Chem B Lett. 104 (2000) 1395.

    Google Scholar 

  37. V. Brunetti, B. Blum, P.L. Schilardi, R.C. Salvarezza and A.J.Arvia, J. Phys. Chem., in press.

  38. E.E. Reid, 'Organic Chemistry of Bivalent Sulfur', Vol. 5 (Chemical Publishing Co., New York, 1963).

    Google Scholar 

  39. M.W. Breiter, 'Electrochemical Processes in Fuel Cells', (Springer, Berlin, 1969).

    Google Scholar 

  40. A. Ulman, Chem. Rev. 96 (1996) 1533.

    Google Scholar 

  41. E. Bunge, R.J. Nichols, B. Roelfs, H. Meyerand H. Baumgärtel, Langmuir 12 (1996) 3060.

    Google Scholar 

  42. A.W. Adamson, 'Physical Chemistry of Surfaces' (John Wiley & Sons, New York, 1982).

    Google Scholar 

  43. A. Baars, J.W.J. Knapen, M. Sluyters-Rehbach and J.H. Sluyters, J. Electroanal. Chem. 368 (1994) 293.

    Google Scholar 

  44. G. Pezzatini, M.R. Moncelli and R. Guidelli, J. Electroanal. Chem. 301 (1991) 227.

    Google Scholar 

  45. A.J. Bard and L.R. Faulkner, 'Electrochemical Methods' (John Wiley & Sons. New York, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.E. Bolzán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolzán, A., Piatti, R., Salvarezza, R. et al. Electrochemical study of thiourea and substituted thiourea adsorbates on polycrystalline platinum electrodes in aqueous sulfuric acid. Journal of Applied Electrochemistry 32, 611–620 (2002). https://doi.org/10.1023/A:1020168529893

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020168529893

Navigation