Skip to main content
Log in

Evaluation of Polycrystalline Platinum and Rhodium Surfaces for the Electro-Oxidation of Aqueous Sulfur Dioxide

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Polycrystalline Rh and Pt were studied to ascertain their electrocatalytic activity for the electro-oxidation of SO2, an important reaction in sulfur dioxide depolarized electrolyzers used to produce hydrogen. Cyclic voltammetry and linear polarization methods were employed to evaluate the catalytic activity of these surfaces. Rh exhibited 25-fold lower catalytic activity than Pt and was more susceptible to poisoning by adsorbed intermediate sulfur species. Koutecky-Levich analysis indicated a two-electron transfer reaction on the Pt surface, which corresponded to the most commonly accepted SO2 electro-oxidation reaction mechanism. The Tafel slopes in the low potential region (near the onset potential), in conjunction with an analysis of well-known reaction mechanisms, suggested that the step leading to the oxidation of water to form adsorbed hydroxyl species was the rate-determining step (RDS). This mechanistic model predicts a decrease in Tafel slope with increasing coverage of catalyst active surface sites by adsorbed sulfur species. For Pt, we estimate a surface sulfur coverage of 4 % based on the experimentally measured Tafel slope. In the case of Rh, the sulfur coverage was calculated to be approximately 1 %. The Tafel slopes obtained changed from 106 mV decade−1 for Rh and 80 mV decade−1 for Pt at potentials below 0.7 V vs. standard hydrogen electrode (SHE) to 210 mV decade−1 for Rh and 162 mV decade−1 for Pt at potentials above 0.7 V vs. SHE, suggesting a change in the reaction mechanism corresponding to a change in the surface of the electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.A. O’Brien, J.T. Hinkley, S.W. Donne, S.E. Lindquist, Electrochim. Acta 55, 573 (2010)

    Article  Google Scholar 

  2. L.E. Brecher, S. Spewock, C.J. Warde, Int. J. Hydrog. Energy 2, 7 (1977)

    Article  Google Scholar 

  3. M.B. Gorensek, J.A. Staser, T.G. Stanford, J.W. Weidner, Int. J. Hydrog. Energy 34, 6089 (2009)

    Article  CAS  Google Scholar 

  4. B.D. Struck, R. Junginger, D. Boltersdorf, J. Gehrmann, Int. J. Hydrog. Energy 5, 487 (1980)

    Article  CAS  Google Scholar 

  5. P.W.T. Lu, R.L. Ammon, Int. J. Hydrog. Energy 7, 563 (1982)

    Article  CAS  Google Scholar 

  6. C. Quijada, F.J. Huerta, E. Morallón, J.L. Vázquez, L.E.A. Berlouis, Electrochim. Acta 45, 1847 (2000)

    Article  CAS  Google Scholar 

  7. C. Quijada, E. Morallón, J.L. Vázquez, L.E.A. Berlouis, Electrochim. Acta 46, 651 (2001)

    Article  Google Scholar 

  8. C. Quijada, A. Rodes, J.L. Vázquez, J.M. Pérez, A. Aldaz, J. Electroanal. Chem. 394, 217 (1995)

    Article  Google Scholar 

  9. A. Zolfaghari, G. Jerkiewicz, W. Chrzanowski, A. Wieckowski, J. Electrochem. Soc. 146(11), 4158 (1999)

    Article  CAS  Google Scholar 

  10. C. Quijada, J.L. Vázquez, A. Aldaz, J. Electroanal. Chem. 414, 229 (1996)

    Article  Google Scholar 

  11. Z. Samec, J. Weber, Electrochim. Acta 20, 403 (1975)

    Article  CAS  Google Scholar 

  12. Z. Samec, J. Weber, Electrochim. Acta 20, 413 (1975)

    Article  CAS  Google Scholar 

  13. I.R. Moraes, M. Weber, F.C. Nart, Electrochim. Acta 42, 617 (1997)

    Article  CAS  Google Scholar 

  14. C. Quijada, J.L. Vázquez, J.M. Pérez, A. Aldaz, J. Electroanal. Chem. 372, 243 (1994)

    Article  CAS  Google Scholar 

  15. C. Quijada, A. Rodes, J.L. Vázquez, J.M. Pérez, A. Aldaz, J. Electroanal. Chem. 398, 105 (1995)

    Article  Google Scholar 

  16. E.T. Seo, D.T. Sawyer, Electrochim. Acta 10, 239 (1965)

    Article  CAS  Google Scholar 

  17. P.W.T. Lu, R.L. Ammon, J. Electrochem. Soc. 127, 2610 (1980)

    Article  CAS  Google Scholar 

  18. J.A. Rodriguez, M. Kuhn, J. Hrbek, Chem. Phys. Lett. 251, 13 (1996)

    Article  CAS  Google Scholar 

  19. J. Billy, M. Abon, Surf. Sci. 146, L525 (1984)

    Article  CAS  Google Scholar 

  20. Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, J. Electrochem. Soc. 154, B670 (2007)

    Article  CAS  Google Scholar 

  21. J.A. Rodriguez, J. Hrbek, M. Kuhn, T. Jirsak, S. Chaturvedi, A. Maiti, J. Chem. Phys. 113, 11284 (2000)

    Article  CAS  Google Scholar 

  22. Y.E. Sung, W. Chrzanowski, A. Wieckowski, A. Zolfaghari, S. Blais, G. Jerkiewicz, Electrochim. Acta 44, 1019 (1998)

    Article  CAS  Google Scholar 

  23. R.M. Spotnitz, J.A. Colucci, S.H. Langer, Electrochim. Acta 28, 1053 (1983)

    Article  CAS  Google Scholar 

  24. M. Peuckert, Surf. Sci. 141, 500 (1984)

    Article  CAS  Google Scholar 

  25. G. Jerkiewicz, J.J. Borodzinski, Langmuir 9, 2202 (1993)

    Article  CAS  Google Scholar 

  26. F. Villiard, G. Jerkiewicz, Can. J. Chem. 75, 1656 (1997)

    Article  CAS  Google Scholar 

  27. R.J. Kriek, J.P. van Ravenswaay, M. Potgieter, A. Calitz, V. Lates, M.E. Björketun, S. Siahrostami, J. Rossmeisl, J. S. Afr. Inst. Min. Metall. 113, 593 (2013)

    Google Scholar 

  28. Y.E. Sung, W. Chrzanowski, A. Zolfaghari, G. Jerkiewicz, A. Wieckowski, J. Am. Chem. Soc. 119, 194 (1997)

    Article  CAS  Google Scholar 

  29. R.J. Kriek, J. Rossmeisl, S. Siahrostami, M.E. Björketun, Phys. Chem. Chem. Phys. 16, 9572 (2014)

    Article  CAS  Google Scholar 

  30. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications (Wiley, New York, 2000)

    Google Scholar 

  31. A. Holewinski, S. Linic, J. Electrochem. Soc. 159, H864 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the North-West University, the HySA Infrastructure Center of Competence, and the National Research Foundation for the research funds that made this work possible. Vijay Ramani would like to acknowledge the Hyosung S. R. Cho Endowed Chair Professorship for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Kriek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potgieter, M., Parrondo, J., Ramani, V.K. et al. Evaluation of Polycrystalline Platinum and Rhodium Surfaces for the Electro-Oxidation of Aqueous Sulfur Dioxide. Electrocatalysis 7, 50–59 (2016). https://doi.org/10.1007/s12678-015-0283-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0283-9

Keywords

Navigation