Skip to main content
Log in

On the Relevance of Mean Field to Continuum Damage Mechanics

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Damage theory is, by its very essence, a mean-field theory. In this note, we argue that considering the effective interaction kernel between an additional micro-crack, and the effective equivalent damaged matrix, the power-law decay of the influence function (or Green's function) becomes more and more long-ranged as the tangent modulus vanishes. Moreover, the reloaded region becomes a narrower and narrower `cone', so that the damage in this cone becomes closer and closer to the so-called global load sharing rule used, for instance, to study a fiber bundle. This constitutes a formal justification of the relevance of such a mean-field approach as the peak stress is approached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barenblatt, G.I. The Mathematical Theory of Equilibrium of Crack in Brittle Fracture, Adv. Appl. Mech. 7 (1962) 55–129.

    Google Scholar 

  • Benallal, A. and Siad, L. Stress and Strain Fields in Cracked Damaged Solids, Tech. Mech. 17 [4] (1997) 295–304.

    Google Scholar 

  • Bouchaud, E., Jeulin, D., Prioul, C. and Roux, S., eds., Physical Aspects of Fracture, (Kluwer Acad. Press, Dordrecht (the Netherlands), 2001) to appear.

    Google Scholar 

  • Bui, H.D. and Ehrlacher, A. Propagation dynamique d'une zone endommagée dans un solide élastique fragile en mode III et en régime permanent, C. R. Acad. Sci. Paris Série B [290] (1980) 273–276.

    Google Scholar 

  • Coleman, B.D. On the Strength of Classical Fibers and Fiber Bundles, J. Mech. Phys. Solids 7 (1958) 60–70.

    Google Scholar 

  • Curtin, W.A. Theory of Mechanical Properties of Ceramic Matrix Composites, J. Am. Ceram. Soc. 74 [11] (1991) 2837–2845.

    Google Scholar 

  • Curtin, W.A. The ‘Tough’ to Brittle Transition in Brittle Matrix Composites, J. Mech. Phys. Solids 41 [2] (1993) 217–245.

    Google Scholar 

  • Curtin, W.A. Ultimate Strength of Fiber-Reinforced Ceramics and Metals, Composites 24 [2] (1993) 98–102.

    Google Scholar 

  • Daniels, H.E. The Statistical Theory of the Strength of Bundles of Threads, Proc. R. Soc. London. A 183 (1945) 405–429.

    Google Scholar 

  • Dragon, A. and Halm, D. A Model of Damage by Mesocrack Growth – Unilateral Behavior and Induced Anisotropy, C. R. Acad. Sci. Paris Série IIb [322] (1996) 275–282.

    Google Scholar 

  • Delaplace, A., Roux, S. and Pijaudier-Cabot, G. Damage Cascade in a Softening Interface Int. J. Solids Struct. 36 (1999) 1403–1426.

    Google Scholar 

  • Delaplace, A., Roux, S. and Pijaudier-Cabot, G. Failure and Scaling Properties of a Softening Interface Connected to an Elastic Block Int. J. Fract. 95 (1999) 159–174.

    Google Scholar 

  • Dugdale, D.S. Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids 8 (1960) 100–104.

    Google Scholar 

  • Halm, D. and Dragon, A. An Anisotropic Model of Damage and Frictional Sliding for Brittle Materials, Eur. J. Mech. A/Solids 17 [3] (1998) 439–460.

    Google Scholar 

  • Germain, P., Nguyen, Q.S. and Suquet, P. Continuum Thermodynamics, J. Appl. Mech. 50 (1983) 1010–1020.

    Google Scholar 

  • Gücer, D.E. and Gurland, J. Comparison of the Statistics of Two Fracture Models, J. Mech. Phys. Solids 10 (1962) 365–373.

    Google Scholar 

  • Hild, F., Domergue, J-M., Evans, A.G. and Leckie, F.A. Tensile and Flexural Ultimate Strength of Fiber-Reinforced Ceramic-Matrix Composites, Int. J. Solids Struct. 31 [7] (1994) 1035–1045.

    Google Scholar 

  • Hild, F. and Feillard, P. Ultimate Strength Properties of Fiber-Reinforced Composites, Rel. Eng. Sys. Saf. 56 [3] (1997) 225–235.

    Google Scholar 

  • Hult, J. and Travnicek, L. Carrying Capacity of Fiber Bundles with Varying Strength and Stiffness, J. Méc. Théor. Appl. 2 [2] (1983) 643–657.

    Google Scholar 

  • Hutchinson, J.W. and Evans, A.G. Mechanics of Materials: Top-down Approaches to Fracture, Acta Mater. 48 (2000) 125–135.

    Google Scholar 

  • Kachanov, M. Elastic Solids with Many Cracks and Related Problems, Adv. Appl. Mech. 30 (1994) 259–445.

    Google Scholar 

  • Knowles, J.K. and Sternberg, E. Anti-Plane Shear Fields with Discontinuous Deformation Gradients near the Tip of a Crack in Finite Elastostatics, J. Elast. 11 (1981) 129–164.

    Google Scholar 

  • Krajcinovic, D. and Silva, M.A.G. Statistical Aspects of the Continuous Damage Theory, Int. J. Solids Struct. 18 [7] (1982) 551–562.

    Google Scholar 

  • Krajcinovic, D. Damage Mechanics, Mech. Mat. 8 (1989) 117–197.

    Google Scholar 

  • Krajcinovic, D. and Van Mier, J., eds., Damage and Fracture of Disordered Materials, (Springer, Wien (Austria), 2000).

    Google Scholar 

  • Ladevèze, P. Sur une théorie de l'endommagement anisotrope, (LMT Cachan, report No. 34, 1983).

  • Lekhnitskii, S.G. Theory of Elasticity of an Anisotropic Body, (Mir publishers, Moscow (Russia), 1981).

    Google Scholar 

  • Lemaitre, J. and Dufailly, J. Modélisation et identification de l'endommagement plastique des métaux, Proceedings 3e congrès français de mécanique, (Grenoble (France), 1977).On the Relevance of Mean Field to Continuum Damage Mechanics 229

    Google Scholar 

  • Lemaitre, J. and Dufailly, J. Damage Measurements, Eng. Fract. Mech. 28 [5–6] (1987) 643–661.

    Google Scholar 

  • Lemaitre, J. and Chaboche, J-L. Damage Mechanics, in: Mechanics of Solid Materials, (Cambridge University Press, Cambridge, 1990), 346–450.

    Google Scholar 

  • Lemaitre, J. A Course on Damage Mechanics, (Springer, Berlin (Germany), 1992).

    Google Scholar 

  • Murakami, S. and Ohno, N. A Continuum Theory of Creep and Creep Damage, in: Ponter, A.R.S. and Hayhurst, D.R. eds., Proceedings Creep in Structures, (Springer, Berlin (Germany), 1981), 422–444.

    Google Scholar 

  • Needleman, A. A Continuum Model for Void Nucleation by Inclusion Debonding, J. Appl. Mech. 54 (1987) 525–530.

    Google Scholar 

  • Neumeister, J.M. Bundle Pullout – A Failure Mechanism limiting the Tensile Strength of Continuous Fiber Reinforced Brittle Matrix Composites and its Implications for Strength Dependence on Volume and Type of Loading, J. Mech. Phys. Solids 41 [8] (1993) 1405–1424.

    Google Scholar 

  • Ritchie, R.O., Knott, R.F. and Rice, J.R. On the Relationship Between Critical Stress and Fracture Toughness in Mild Steel, J. Mech. Phys. Solids 21 (1973) 395–410.

    Google Scholar 

  • Sanchez-Palencia, E. Boundary Layers and Edge Effects in Composites, in: E. Sanchez-Palencia and A. Zaoui, eds., Homogenization Techniques for Composite Media, (Springer-Verlag, Berlin (Germany), 1987) 122–192.

    Google Scholar 

  • Smith, R.L. and Phoenix, S.L. Asymptotic Distributions for the Failure of Fibrous Materials Under Series-Parallel Structure and Equal Load-Sharing, J. Appl. Mech. 48 (1981) 75–82.

    Google Scholar 

  • Suo, Z., Bao, G., Fan, B. and Wang, T.C. Orthotropy Rescaling and Implications for Fracture of Composites, Int. J. Solids and Struct. 28 [2] (1991) 235–248.

    Google Scholar 

  • Wu, B.Q. and Leath, P.L. Singularity of Growing Cracks in Breakdown of Heterogeneous Planar Interfaces, Phys. Rev. B 62 [14] (2000) 9338–9348.

    Google Scholar 

  • Zweben, C. and Rosen, B.W. A Statistical Theory of Material Strength with Application to Composite Materials, J. Mech. Phys. Solids 18 (1970) 189–206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Roux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roux, S., Hild, F. On the Relevance of Mean Field to Continuum Damage Mechanics. International Journal of Fracture 116, 219–229 (2002). https://doi.org/10.1023/A:1020131031404

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020131031404

Navigation