Skip to main content
Log in

Damage and fracture: Classical continuum theories

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

This paper reports the research results on the continuum theory of damage which goes back to the works of Kachanov, Gurson, and Rabotnov. In these models, internal variables that generally have different mathematical structure are explicitly introduced to constitutive relations. The internal variables describe a non-oriented (using scalar damage parameters) or oriented (using different-order tensors) damage distribution in the material. Then, a fracture criterion is introduced based on mechanical or thermodynamic considerations. Models of this type are still most frequently used in the structural analysis of strength of some materials (e.g., composites). Since damage nucleation and growth are closely related to strain localization, consideration is given to formulations and methods for analyzing the stability of inelastic deformation processes. Much attention is given to the effect of the finite element mesh on simulation results, to solution algorithms for such problems, and to the possibilities of using non-local constitutive models. The studies that use gradient models are also included, because damage formation is associated with sharp spatial variations of kinematic and/or dynamic characteristics which must be described by non-classical constitutive relations (gradient, non-local, micromorphic continuum).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Volegov, P.S., Gribov, D.S., and Trusov, P.V., Damage and Fracture: Review of Experimental Studies, Phys. Mesomech., 2016, vol. 19, no. 3, pp. 319–331.

    Article  Google Scholar 

  2. Zhang, W. and Cai, Y., Review of Damage Mechanics, Continuum Damage Mechanics and Numerical Applications, Berlin: Zhejiang University Press, Hangzhou and Springer-Verlag, 2010, pp. 15–57.

    Google Scholar 

  3. Besson, J., Continuum Models of Ductile Fracture: A Review, Int. J. Damage Mech., 2010, vol. 19, pp. 3–52.

    Article  Google Scholar 

  4. Gurson, A.L., Continuum Theory of Ductile Rupture by Void Nucleation and Growth. Part I. Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Tech., 1977, vol. 99, pp. 2–15.

    Article  Google Scholar 

  5. Bishop, J.F. and Hill, R., A Theory of the Plastic Distortion of a Polycrystalline Aggregate under Combined Stresses, Philos. Mag. Ser. 7, 1951, vol. 42, no. 327, pp. 414–427.

    Article  MathSciNet  MATH  Google Scholar 

  6. Tvergaard, V. and Needleman, A., Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metall., 1984, vol. 32, pp. 157–169.

    Article  Google Scholar 

  7. Kachanov, L.M., Foundations of Fracture Mechanics, Moscow: Nauka, 1974.

    Google Scholar 

  8. Rabotnov, Yu.N., Introduction to Fracture Mechanics, Moscow, Nauka, 1987.

    MATH  Google Scholar 

  9. Sosnovskiy, L. and Sherbakov, S., The Concept of Damaged Material, Visnik TNTU, 2011, spec. iss., part 1, pp. 14–23.

    Google Scholar 

  10. Lemaitre, J., A Continuous Damage Mechanics Model for Ductile Fracture, J. Eng. Mater. Tech. Trans. ASME, 1985, vol. 107, pp. 83–89.

    Article  Google Scholar 

  11. Golub, V.P. and Romanov, A.V., Construction of Nonlinear Models of Damage Cumulation in Creep, Strength Mater., 1990, vol. 22, no. 6, pp 786–792.

    Article  Google Scholar 

  12. Larin, O.O., Trubayev, O.I., and Vodka, O.O., The Fatigue Life-Time Propagation of the Connection Elements of Long-Term Operated Hydroturbines Considering Material Degradation, PNRPU Mech. Bull., 2014, no. 1, pp. 167–193.

    Article  Google Scholar 

  13. Gorev, B.V. and Banshchikova, I.A., To the Description of Softening Stage of Stress-Strain Diagram with Scalar Damage Parameter Kinetic Equations, VestnikSamGTU. Ser. Fiz.-Mat. Nauki, 2008, no. 2(17), pp. 110–117.

    Article  Google Scholar 

  14. Gorev, B.V. and Banshchikova, I.A., To Description of Creep Process and Fracture of Hardening Materials According to Kinetic Equations with Scalar Damage Parameter, Vestnik SamGTU. Ser. Fiz.-Mat. Nauki, 2009, no. 2(19), pp. 90–98.

    Google Scholar 

  15. Il’yushin, A.A., A Theory of Long-Term Strength, Inzh. Zh. Mekh. Tverd. Tela, 1967, no. 3, pp. 21–35.

    Google Scholar 

  16. Zavoychinskaya, E.B. and Kiyko, I.A., Introduction to the Theory of Fracture of Solids, Moscow: MGU, 2004.

    Google Scholar 

  17. Malmeister, A.K., Tamuzh, V.P., and Teters, G.A., Resistance of Polymer and Composite Materials, Riga: Zinatne, 1980.

    Google Scholar 

  18. Tamuzh, V.P., A Possible Theory of Prolonged Failure, Strength Mater., 1971, vol. 3, no. 2, pp. 177–183.

    Article  Google Scholar 

  19. Kanaun, S.K. and Chudnovsky, A.I., On Quasi-Brittle Fracture, Mekh. Tv. Tela, 1970, no. 3, pp. 185–186.

    Google Scholar 

  20. Kiyalbaev, D.A. and Chudnovsky, A.I., Failure of Solids under Strain, J. Appl. Mech. Tech. Phys., 1970, vol. 11, no. 3, pp. 453–457.

    Article  ADS  Google Scholar 

  21. Bondar, V.S., Danshin, V.V., and Makarov, D.A., Mathematical Modelling of Deformation and Damage Accumulation under Cyclic Loading, PNRPU Mech. Bull., 2014, no. 2, pp. 125–152.

    Article  Google Scholar 

  22. Murakami, S., Mechanical Modeling of Material Damage, J. Appl. Mech., 1988, vol. 55, no. 2, pp. 280–286.

    Article  ADS  Google Scholar 

  23. Astafiev, V.I., Radaev, Yu.N., and Stepanova, L.V., Nonlinear Mechanics of Fracture: A Handbookfor Students, Samara: Samara Univ., 2004.

    Google Scholar 

  24. Tutyshkin, N.D. and Zapara, M.A., Constitutive Relations of the Tensor Theory of Plastic Damage of Metals, Problems of Strength, Plasticity and Stability in Deformable Solid Mechanics, Tver: TvGTU, 2011, pp. 216–219.

    Google Scholar 

  25. Vildeman, V.E., Sokolkin, Y.V., and Tashkinov, A.A., Mechanics of Inelastic Deformation and Fracture of Composite Materials, Moscow: Nauka, Fizmatlit, 1997.

    Google Scholar 

  26. Pobedrya, B.E., The Deformation Theory of Plasticity of Anisotropic Media, J. Appl. Math. Mech., 1984, vol. 48, no. 1, pp. 10–17.

    Article  MATH  Google Scholar 

  27. Pobedrya, B.E., Mechanics of Composite Materials, Moscow: MGU, 1984.

    MATH  Google Scholar 

  28. Zaitsev, A.V., Sokolkin, Yu.V., and Fukalov, A.A., Initial Damage Mechanisms of Reinforced Concrete Monolithic Supports for Spherical Mine Workings Located in Sedimentary Rock Mass, PNRPU Mech. Bull., 2013, no. 4, pp. 59–74.

    Google Scholar 

  29. Naimark, O.B., Collective Properties of Defect ©nsembles and Some Nonlinear Problems of Plasticity and Fracture, Phys. Mesomech., 2003, vol. 6, no. 4, pp. 39–64.

    Google Scholar 

  30. Bannikov, M.V., Fedorova, A.Y., Terekhina, A.I., and Plekhov, O.A., Experimental Study of Fractal Properties of Fatigue Crack Growth and ©nergy Dissipation in Crack Tip, PNRPU Mech. Bull., 2013, no. 2, pp. 21–36.

    Google Scholar 

  31. Panteleev, I.A., Naimark, O.B., and Froustey, C., Structural-Scaling Transitions and Universality of Fluctuation Statistics under Plastic Deformation of Metals, Comp. Cont. Mech., 2009, vol. 2, no. 3, pp. 70–81.

    Article  Google Scholar 

  32. Panteleev, I.A., Plekhov, O.A., and Naymark, O.B., Self Similarity Mechanisms of Damage Growth in Solids Experiencing Quasi-Brittle Fracture, Comp. Cont. Mech., 2011, vol. 4, no. 1, pp. 90–100.

    Article  Google Scholar 

  33. Naimark, O.B. and Plekhov, O.A., Structural-Scaling Transitions in Mesodefect Ensembles and Properties of Bulk Nanostructural Materials Modeling and Experimental Study, Solid Mech. Appl., 2009, vol. 13, pp. 271–278.

    Google Scholar 

  34. Cannmo, P., Runesson, K., and Ristinmaa, M., Modelling of Plasticity and Damage in a Polycrystalline Microstructure, Int. J. Plasticity, 1995, vol. 11, no. 8, pp. 949–970.

    Article  MATH  Google Scholar 

  35. Dragon, A., Halm, D., and Desoyer, Th., Anisotropic Damage in Quasi-Brittle Solids: Modelling, Computational Issues and Applications, Comput. Meth. Appl. Mech. Eng., 2000, vol. 183, pp. 331–352.

    Article  MATH  Google Scholar 

  36. Kotrechko, S., Stetsenko, N., and Shevchenko, S., Effect of Texture Smearing on the Anisotropy of Cleavage-Stress of Metals and Alloys, Theor. Appl. Fract. Mech., 2004, vol. 42, pp. 89–98.

    Article  Google Scholar 

  37. Li, J.-R. and Yu, J.-L., Computational Simulations of Intergranular Fracture of Polycrystalline Materials and Size Effect, Eng. Fract. Mech., 2005, vol. 72, pp. 2009–2017.

    Article  Google Scholar 

  38. Doltsinis, I. and Dattke, R., Numerical Experiments on the Rupture of Brittle Solids—Variation of Microstructure, goading and Dimensions, Int. J. Solids Struct., 2005, vol. 42, pp. 565–579.

    Article  MATH  Google Scholar 

  39. Kachanov, M. and Sevostianov, I., On Quantitative Characterization of Microstructures and Effective Properties, Int. J. Solids Struct., 2005, vol. 42, pp. 309–336.

    Article  MATH  Google Scholar 

  40. Desmorat, R., Gatuingt, F., and Ragueneau, F., Nonlocal Anisotropic Damage Model and Related Computational Aspects for Quasi-Brittle Materials, Eng. Fract. Mech., 2007, vol. 74, pp. 1539–1560. doi 10.1016/j.engfracmech. 2006.09.012

    Article  Google Scholar 

  41. Jirasek, M. and Suarez, F., Localization Analysis of an Anisotropic Damage Model, Proc. 9th Int. Conf. Eng. Comp. Technology, Ivanyi, P. and Topping, B.H.V., Eds., Stirlingshire, Scotland: Civil-Comp Press, 2014, pp. 1–21.

    Google Scholar 

  42. Bai, Y. and Wierzbicki, T., A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence, Int. J. Plasticity, 2008, vol. 24, pp. 1071–1096.

    Article  MATH  Google Scholar 

  43. Besson, J., Damage of Ductile Materials Deforming under Multiple Plastic or Viscoplastic Mechanisms, Int. J. Plasticity, 2009, vol. 25, pp. 2204–2221.

    Article  Google Scholar 

  44. Hu, X.H., Jain, M., Wu, P.D., Wilkinson, D.S., and Mishra, R.K., A Macro-Micro-Multi-gevel Modeling Scheme to Study the Effect of Particle Distribution on Wrap-Bendability ofAA5754 Sheet Alloys, J. Mater. Process. Tech., 2010, vol. 210, pp. 1232–1242.

    Article  Google Scholar 

  45. Zhang, W. and Cai, Y., Review of Damage Mechanics, Continuum Damage Mechanics and Numerical Applications, Berlin: Zhejiang University Press, Hangzhou and Springer-Verlag, 2010, pp. 15–57.

    Chapter  Google Scholar 

  46. Armstrong, R.W., Dislocation Viscoplasticity Aspects of Material Fracturing, Eng. Fract. Mech., 2010, vol. 77, pp. 1348–1359.

    Article  Google Scholar 

  47. Badreddine, H., Saanouni, K., and Dogui, A., On Non-Associative Anisotropic Finite Plasticity Fully Coupled with Isotropic Ductile Damage for Metal Forming, Int. J. Plasticity, 2010, vol. 26, pp. 1541–1575.

    Article  MATH  Google Scholar 

  48. Bammann, D.J. and Solanki, K.N., On Kinematic, Thermodynamic, and Kinetic Coupling of a Damage Theory for Polycrystalline Material, Int. J. Plasticity, 2010, vol. 26, pp. 775–793.

    Article  MATH  Google Scholar 

  49. Tvergaard, V. and Nielsen, K.g., Relations between a Micro-Mechanical Model and a Damage Model for Ductile Failure in Shear, J. Mech. Phys. Solids, 2010, vol. 58, pp. 1243–1252. doi 10.1016/j.jmps.2010.06.006

    Article  ADS  MathSciNet  Google Scholar 

  50. Nahshon, K. and Hutchinson, J., Modification of the Gurson Model for Shear Failure, Eur. J. Mech. A. Solids, 2008, vol. 27, pp. 1–17. doi 10.1016/j.euromechsol.2007.08.002

    Article  ADS  MATH  Google Scholar 

  51. Williams, B.W., StLawrence, S., and Leitch, B.W., Comparison of the Measured and Predicted Crack Propagation Behaviour of Zr-2.5Nb Pressure Tube Material, Eng. Fract. Mech., 2011. doi 10.1016/j.engfracmech.2011.06.020

    Google Scholar 

  52. Keralavarma, S.M., Hoelscher, S., and Benzerga, A.A., Void Growth and Coalescence in Anisotropic Plastic Solids, Int. J. Solids Struct., 2011, vol. 48, pp. 1696–1710.

    Article  MATH  Google Scholar 

  53. Kruch, S. and Chaboche, J.-L., Multi-Scale Analysis in Elasto-Viscoplasticity Coupled with Damage, Int. J. Plasticity, 2011, vol. 27, pp. 2026–2039.

    Article  MATH  Google Scholar 

  54. Dvorak, G., Transformation Field Analysis of Inelastic Composite Materials, Proc. R. Soc. Lond. A, 1992, vol. 437, pp. 311–327.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Michel, J.C. and Suquet, P., Nonuniform Transformation Field Analysis, Int. J. Solids Struct., 2003, vol. 40, pp. 6937–6955.

    Article  MathSciNet  MATH  Google Scholar 

  56. Lecarme, L., Tekog, C., and Pardoen, T., Void Growth and Coalescence in Ductile Solids with Stage III and Stage IV Strain Hardening, Int. J. Plasticity, 2011, vol. 27, pp. 1203–1223. doi 10.1016j.ijplas.2011.01.004

    Article  MATH  Google Scholar 

  57. Monchiet, V., Charkaluk, E., and Kondo, D., A Micromechanics-Based Modification of the Gurson Criterion by Using Eshelby-Like Velocity Fields, Eur. J. Mech. A. Solids, 2011, vol. 30, pp. 940–949. http://dx.doi.org/10. 1016/j.euromechsol.2011.05.008

    Article  ADS  MATH  Google Scholar 

  58. Vignjevic, R., Djordjevic, N., and Panov, V., Modelling of Dynamic Behaviour of Orthotropic Metals Including Damage and Failure, Int. J. Plasticity, 2012, vol. 38, pp. 47–85.

    Article  Google Scholar 

  59. Malcher, L., Andrade Pires, F.M., and Cesar de Sa, J.M.A., An Assessment of Isotropic Constitutive Models for Ductile Fracture under High and Low Stress Triaxiality, Int. J. Plasticity, 2012, vol. 30-31, pp. 81–115. http://dx.doi.org/10.1016/j.ijplas.2011.10.005

    Article  Google Scholar 

  60. Pham, M.S., Holdsworth, S.R., Janssens, K.G.F., and Mazza, E., Cyclic Deformation Response of AISI 316L at Room Temperature: Mechanical Behaviour, Microstructural Evolution, Physically-Based Evolutionary Constitutive Modelling, Int. J. Plasticity, 2013, vol. 47, pp. 143–164.

    Article  Google Scholar 

  61. Komori, K., An Ellipsoidal Void Model for Simulating Ductile Fracture Behavior, Mech. Mater., 2013, vol. 60, pp. 36–54.

    Article  Google Scholar 

  62. Glushkov, S.V., Skvortsov, Yu.V., and Perov, S.N., Comparison of the Results of Solving the Problem of Fracture Mechanics for Pipe with Non-Through Crack, PNRPU Mech. Bull., 2014, no. 3, pp. 36–49.

    Article  Google Scholar 

  63. Walton, C.A., Horstemeyer, M.F., Martin, H.J., and Francis, D.K., Formulation of a Macroscale Corrosion Damage Internal State Variable Model, Int. J. Solids Struct., 2014, vol. 51, pp. 1235–1245.

    Article  Google Scholar 

  64. Tutyshkin, N., Muller, W.H., Wille, R., and Zapara, M., Strain-Induced Damage of Metals under Large Plastic Deformation: Theoretical Framework and Experiments, Int. J. Plasticity, 2014, vol. 59, pp. 133–151. http://dx. doi.org/10.1016/j.ijplas.2014.03.011

    Article  Google Scholar 

  65. Lou, Y., Yoon, J.W., and Huh, H., Modeling of Shear Ductile Fracture Considering a Changeable Cut-Off Value for Stress Triaxiality, Int. J. Plasticity, 2014, vol. 54, pp. 5680.

    Article  Google Scholar 

  66. Leblond, J.B., Perrin, G., and Devaux, J., Bifurcation Effects in Ductile Metals with Nonlocal Damage, Trans. ASME. J. Appl. Mech., 1994, vol. 61, pp. 236–242.

    Article  ADS  MATH  Google Scholar 

  67. Tvergaard, V. and Needleman, A., Effects of Nonlocal Damage in Porous Plastic Solids, Int. J. Solids Structures, 1995, vol. 32, no. 8/9, pp. 1063–1077.

    Article  MATH  Google Scholar 

  68. Peerlings, R.H.J., Brekelmans, W.A.M., de Borst, R., and Geers, M.G.D., Gradient-Enhanced Damage Modelling of High-Cycle Fatigue, Int. J. Numer. Meth. Eng., 2000, vol. 49, pp. 1547–1569.

    Article  MATH  Google Scholar 

  69. Peerlings, R.H.J., Mediavilla, J., Engelen, R.A.B., and Geers, M.G.D., Towards a Micromechanics-Based Modelling of Damage Development during the Forming of Food-Can Lids, Eng. Fract. Mech., 2008, vol. 75, pp. 32943305.

    Article  Google Scholar 

  70. Jackiewicz, J. and Kuna, M., Non-Local Regularization for FE Simulation of Damage in Ductile Materials, Comp. Mater. Sci., 2003, vol. 28, pp. 684–695.

    Article  Google Scholar 

  71. Hu, C. and Ghosh, S., Locally Enhanced Voronoi Cell Finite Element Model (LE-VCFEM) for Simulating Evolving Fracture in Ductile Microstructures Containing Inclusions, Int. J. Numer. Method. Eng., 2008, vol. 76, pp. 1955–1992. doi 10.1002/nme.2400

    Article  MathSciNet  MATH  Google Scholar 

  72. Enakoutsa, K., Leblond, J.-B., and Perrin, G., Numerical Implementation and Assessment of a Phenomenological Nonlocal Model of Ductile Rupture, Comput. Method. Appl. Mech. Eng., 2007, vol. 196, pp. 1946–1957.

    Article  ADS  MATH  Google Scholar 

  73. Zervos, A., Papanastasiou, P., and Vardoulakis, I., Modelling of Localization and Scale Effect in Thick-Walled Cylinders with Gradient Elastoplasticity, Int. J. Solids Struct., 2001, vol. 38, pp. 5081–5095.

    Article  MATH  Google Scholar 

  74. Forest, S., Boubidi, P., and Sievert, R., Strain Localization Patterns at a Crack Tip in Generalized Single Crystal Plasticity, Scripta Mater., 2001, vol. 44, pp. 953–958.

    Article  Google Scholar 

  75. Reusch, F., Svendsen, B., and Klingbeil, D., Local and Non-Local Gurson-Based Ductile Damage and Failure Modelling at Large Deformation, Eur. J. Mech. A. Solids, 2003, vol. 22, pp. 779–792. doi 10.1016/S0997-7538(03) 00070-6

    Article  MATH  Google Scholar 

  76. Vernerey, F., Liu, W.K., and Moran, B., Multi-Scale Micromorphic Theory for Hierarchical Materials, J. Mech. Phys. Solids, 2007, vol. 55, pp. 2603–2651. doi 10.1016/j.jmps.2007.04.008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Vernerey, F.J., Liu, W.K., Moran, B., and Olson, G., A Micromorphic Model for the Multiple Scale Failure of Heterogeneous Materials, J. Mech. Phys. Solids, 2008, vol. 56, pp. 1320–1347. doi 10.1016/j.jmps.2007.09.008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Enakoutsa, K. and Leblond, J.-B., Numerical Implementation and Assessment of the GLPD Micromorphic Model of Ductile Rupture, Eur. J. Mech. A. Solids, 2009, vol. 28, pp. 445–460.

    Article  ADS  MATH  Google Scholar 

  79. Gologanu, M., Leblond, J.B., Perrin, G., and Devaux, J., Recent Extensions of Gurson’s Model for Porous Ductile Metals, Continuum Micromechanics: CISM Courses and Lectures, Suquet, P., Ed., 1997, vol. 377, pp. 61–130.

    Chapter  Google Scholar 

  80. Bergheau, J.-M., Leblond, J.-B., and Perrin, G., A New Numerical Implementation of a Second-Gradient Model for Plastic Porous Solids, with an Application to the Simulation of Ductile Rupture Tests, Comput. Meth. Appl. Mech. Eng., 2014, vol. 268, pp. 105–125. doi org/10.1016/j.cma.2013.09.006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Aslan, O. and Forest, S., The Micromorphic versus Phase Field Approach to Gradient Plasticity and Damage with Application to Cracking in Metal Single Crystals, Multiscale Methods in Computational Mechanics, Lecture Notes in Applied and Computational Mechanics, de Borst, R. and Ramm, E., Eds., 2011, no. 55. doi 10.1007/978-90-481-9809-2_8

    Google Scholar 

  82. Zybell, L., Hutter, G., Linse, T., Mühlich, U., and Kuna, M., Size Effects in Ductile Failure of Porous Materials Containing Two Populations of Voids, Eur. J. Mech. A. Solid., 2014, vol. 45, pp. 8–19.

    Article  ADS  Google Scholar 

  83. Linse, T., Hutter, G., and Kuna, M., Simulation of Crack Propagation Using a Gradient-Enriched Ductile Damage Model Based on Dilatational Strain, Eng. Fract. Mech., 2012, vol. 95, pp. 13–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Trusov.

Additional information

Original Russian Text © P.S. Volegov, D.S. Gribov, P.V. Trusov, 2015, published in Fizicheskaya Mezomekhanika, 2015, Vol. 18, No. 4, pp. 68-86.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volegov, P.S., Gribov, D.S. & Trusov, P.V. Damage and fracture: Classical continuum theories. Phys Mesomech 20, 157–173 (2017). https://doi.org/10.1134/S1029959917020060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959917020060

Keywords

Navigation