Skip to main content
Log in

Study of thermally treated dickite by infrared and micro-Raman spectroscopy using curve-fitting technique

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The products of dickite heated in air at 1000 to 1300°C were studied using curve-fitting of transmission and photoacoustic infrared and micro-Raman spectra. The spectra were compared with those of mullite, Al-spinel, corundum, cristobalite, amorphous silica and meta-dickite. Bands that characterize crystalline phases appeared at 1100°C and became stronger with increasing temperature. Mullite, Al-spinel, corundum and amorphous silica were identified by their characteristic bands. The characteristic IR bands of cristobalite overlap those of mullite and amorphous silica, and its presence was therefore established from intensity ratios of the appropriate bands. The research clearly demonstrated the advantage of using curve-fitting for the identification of high temperature phases in the study of the thermal treatment of kaolin-like minerals by infrared and Raman spectroscopy. This technique seems to be a useful method for materials analysis in the ceramic industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Arnold, Ceramic theory and cultural process. Cambridge University Press, Cambridge 1985.

    Google Scholar 

  2. R. R. West, in ‘Differential Thermal Analysis’ (R. C. Mackenzie, Ed.) Academic Press, London 1972, Vol. 2, p. 149.

    Google Scholar 

  3. P. Sennet, in ‘Kirk-Othner Encyclopedia of Chemical Technology’, 4th edition, Wiley, New York 1992, Vol. 6, p. 405.

    Google Scholar 

  4. H. H. Murray, in ‘Ullman’s Encyclopedia of Industrial Chemistry’, 5th edition, VCH, Berlin 1985, Vol. A7, p. 109.

    Google Scholar 

  5. M. Belloto, A. Gualtieri, G. Artioli and S. M. Clark, Phys. Chem. Miner., 22 (1995) 207.

    Google Scholar 

  6. D. Massiot, P. Dion, J. F. Alcover and F. Bergaya, J. Amer. Ceram. Soc., 78 (1995) 2940.

    Google Scholar 

  7. J. Dubois, M. Murat, A. Amroune, X. Carbonneau and R. Gardon, Appl. Clay Sci., 10 (1995) 187.

    Google Scholar 

  8. P. Dion, J.-F. Alcover, C. Clinard and D. Tchoubar, J. Mater. Sci., 31 (1996) 5069.

    Google Scholar 

  9. P. Dion, J.-F. Alcover, F. Bergaya, A. Ortega, P. L. Llewellyn and F. Rouquerol, Clay Miner., 33 (1998) 269.

    Google Scholar 

  10. A. Gualtieri and M. Bellotto, Phys. Chem. Miner., 25 (1998) 442.

    Google Scholar 

  11. M. P. Riccardi, B. Messiga and P. Duminuco, Appl. Clay Sci., 15 (1999) 393.

    Google Scholar 

  12. L. Stoch, J. Thermal Anal., 29 (1984) 919.

    Google Scholar 

  13. R. L. Frost and A. M. Vassallo, Clays Clay Miner., 44 (1996) 635.

    Google Scholar 

  14. S. Shoval, M. Boudeulle, S. Yariv, I. Lapides and G. Panczer, Optic. Mater., 16 (2001) 319.

    Google Scholar 

  15. C. T. Johnston, J. Helsen, R. A. Schoonheydt, D. L. Bish and S. F. Angew, Amer. Miner., 83 (1998) 75.

    Google Scholar 

  16. S. Shoval, S. Yariv, K. H. Michaelian, M. Boudeulle and G. Panczer, Clays Clay Miner., 49 (2001) 347.

    Google Scholar 

  17. S. Shoval, B. Champagnon and G. Panczer, J. Thermal Anal., 50 (1997) 203.

    Google Scholar 

  18. S. Shoval, S. Yariv, M. Boudeulle and G. Panczer, in ‘Clays for our future’ (H. Kodama, A. R. Mermut & J. K. Torrance, eds.), ICC 1997, Ottawa, Canada 1999, p. 623.

  19. S. Shoval, B. Champagnon, G. Panczer, M. Gaft and M. Boudeulle, Proc., Semaine Franco-Israelienne, Université Claude Bernard, Lyon, France 1999.

    Google Scholar 

  20. F. Freund, in ‘The infrared spectra of minerals’ (V. C. Farmer ed.), Mineralogical Society, London 1974, p. 465.

    Google Scholar 

  21. H. H. W. Moenke, in ‘The infrared spectra of minerals’ (V. C. Farmer ed.), Mineralogical Society, London 1974, p. 365.

    Google Scholar 

  22. S. Mishirky, S. Yariv and Siniarsky, Clay Sci., 4 (1974) 213.

    Google Scholar 

  23. H. W. Van der Marel and H. Beutelspacher, ‘Atlas of infrared spectroscopy of clay minerals and their admixtures’. Elsevier 1976.

  24. A. N. Lazarev, in ‘The Infrared Spectra of Minerals’ (V. C. Farmers ed.) Mineralogical Society, London 1974, p. 69.

    Google Scholar 

  25. S. Yariv, Clay Miner., 21 (1986) 925.

    Google Scholar 

  26. T. Sato, ‘Preparation of aluminium hydroxides and aluminas’, Litarvan Literature, Nedherland, Colorado 1996.

  27. S. M. Bradley, R. A. Kydd and R. F. Howe, J. Coll. Int. Sci., 159 (1993) 405.

    Google Scholar 

  28. C. H. Ruscher, Phys. Chem. Miner., 23 (1996) 50.

    Google Scholar 

  29. B. Champagnon, G. Panczer, C. Chemarin and B. Humbert-Labeaumaz, J. Non-Crystal. Solids, 196 (1996) 221.

    Google Scholar 

  30. N. Q. Liem, G. Sagon, V. X. Quang, H. V. Tan and P. Colomban, J. Raman Spect., 31 (2000) 933.

    Google Scholar 

  31. B. Humbert, A. Burneau, J. P. Gallas and J. C. Lavally, J. Non-Crystal. Solids, 143 (1992) 75.

    Google Scholar 

  32. H. J. Percival, J. Duncan and P. K. Foster, J. Amer. Ceram. Soc., 57 (1974) 57.

    Google Scholar 

  33. S. Shoval, Thermochim. Acta, 135 (1988) 243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shoval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoval, S., Michaelian, K.H., Boudeulle, M. et al. Study of thermally treated dickite by infrared and micro-Raman spectroscopy using curve-fitting technique. Journal of Thermal Analysis and Calorimetry 69, 205–225 (2002). https://doi.org/10.1023/A:1019954227093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019954227093

Navigation