Skip to main content
Log in

Error Estimates for a Time Discretization Method for the Richards' Equation

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a numerical analysis of a time discretization method applied to Richards' equation. Written in its saturation-based form, this nonlinear parabolic equation models water flow into unsaturated porous media. Depending on the soil parameters, the diffusion coefficient may vanish or explode, leading to degeneracy in the original parabolic equation. The numerical approach is based on an implicit Euler time discretization scheme and includes a regularization step, combined with the Kirchhoff transform. Convergence is shown by obtaining error estimates in terms of the time step and of the regularization parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Alt and S. Luckhaus, Quasilinear elliptic–parabolic differential equations, Math. Z. 183 (1983) 311–341.

    Google Scholar 

  2. R.G. Baca, J.N. Chung and D.J. Mulla, Mixed transform finite element method for solving the non-linear equation for flow in variably saturated porous media, Internat. J. Numer. Methods Fluids 24 (1997) 441–455.

    Google Scholar 

  3. P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert and C. Wieners, UG – A flexible software toolbox for solving partial differential equations, Comput. Vis. Sci. 1 (1997) 27–40.

    Google Scholar 

  4. J. Bear and Y. Bachmat, Introduction to Modelling of Transport Phenomena in Porous Media(Kluwer Academic, Dordrecht, 1991).

    Google Scholar 

  5. L. Berganaschi and M. Putti, Mixed finite elements and Newton-type linearizations for the solution of Richards' equation, Internat. J. Numer. Methods Engrg. 45 (1999) 1025–1046.

    Google Scholar 

  6. M.A. Celia, E.T. Bouloutas and R.L. Zarba, A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res. 26 (1990) 1483–1496.

    Google Scholar 

  7. C.J. van Duijn and L.A. Peletier, Nonstationary filtration in partially saturated porous media, Arch. Rational Mech. Anal. 78 (1982) 173–198.

    Google Scholar 

  8. C.M. Elliott, Error analysis of the enthalpy method for the Stefan problem, IMA J. Numer. Anal. 7 (1987) 61–71.

    Google Scholar 

  9. R. Eymard, M. Gutnic and D. Hillhorst, The finite volume method for Richards equation, Comput. Geosci. 3 (1999) 259–294.

    Google Scholar 

  10. M.Th. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsatu-rated soils, Soil Sci. Soc. Amer. J. 44 (1980) 892–898.

    Google Scholar 

  11. B.H. Gilding, Qualitative mathematical analysis of the Richards equation, Transp. Porous Media 5 (1991) 651–666.

    Google Scholar 

  12. W. Hackbusch, On first and second order box schemes, Computing 41 (1989) 277–296.

    Google Scholar 

  13. J. Hulshof and N. Wolanski, Monotone flows in N-dimensional partially saturated porous media: Lipschitz continuity of the interface, Arch. Rational Mech. Anal. 102 (1988) 287–305.

    Google Scholar 

  14. W. Jäger and J. Ka¡cur, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes, Math. Model. Numer. Anal. 29 (1995) 605–627.

    Google Scholar 

  15. J. Ka¡ cur, Solution to strongly nonlinear parabolic problems by a linear approximation scheme, IMA J. Numer. Anal. 19 (1999) 119–145.

    Google Scholar 

  16. D. Kavetski, P. Binning and S.W. Sloan, Adaptive time stepping and error control in a mass conserva-tive numerical solution of the mixed form of Richards equation, Adv. Water Res. 24 (2001) 595–605.

    Google Scholar 

  17. C.T. Kelley, C.T. Miller and M.D. Tocci, Termination of Newton/chord iterations and the method of lines, SIAM J. Sci. Comput. 19 (1998) 280–290.

    Google Scholar 

  18. J.L. Lions and E. Magenes, Non Homogenous Boundary Value Problems and Applications,Vol.I (Springer, Berlin, 1972).

    Google Scholar 

  19. E. Magenes, R.H. Nochetto and C. Verdi, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems, Math. Model. Numer. Anal. 21 (1987) 655–678.

    Google Scholar 

  20. Y. Mualem, A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res. 12 (1976) 513–522.

    Google Scholar 

  21. R.H. Nochetto and C. Verdi, Approximation of degenerate parabolic problems using numerical inte-gration, SIAM J. Numer. Anal. 25 (1988) 784–814.

    Google Scholar 

  22. F. Otto, L 1-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations 131 (1996) 20–38.

    Google Scholar 

  23. I.S. Pop, Regularization methods in the numerical analysis of some degenerate parabolic equations, Preprint 98-43 (SFB 359), IWR, University of Heidelberg, Germany (1998).

    Google Scholar 

  24. I.S. Pop and W.A. Yong, A numerical approach to degenerate parabolic equations, Numer. Math. (in press).

  25. F. Radu, I.S. Pop and P. Knabner, Error estimates for an Euler implicit, mixed finite element dis-cretization of Richards' equation: Equivalence between mixed and conformal approaches, RANA Preprint 02-06, Eindhoven University of Technology (2002).

  26. M.J.L. Robin, A.L. Gutjahr, E.A. Sudicky and J.L. Wilson, Cross-corelated random field generation with the direct Fourier transform method, Water Resour. Res. 29 (1993) 2385–2397.

    Google Scholar 

  27. M. Slodicka, Some finite element schemes arising in modeling of flow through porous media, Habil. dissertation, University of Augsburg, Germany (1999).

    Google Scholar 

  28. C. Wagner, G. Wittum, R. Fritsche and H.P. Haar, Diffusions–Reaktionsprobleme in ungesättigten porösen Medien, in: Mathematik–Schlüsseltechnologie für die Zukunft, eds. K.H. Hoffmann, W. Jäger, T. Lohmann and H. Schunck (Springer, Berlin, 1997) pp. 243–253.

    Google Scholar 

  29. C. Wagner, Numerical methods for diffusion-reaction-transport processes in unsaturated porous me-dia, Comput. Vis. Sci. 1 (1998) 97–105.

    Google Scholar 

  30. G.A. Williams and C.T. Miller, An evaluation of temporally adaptive transformation approaches for solving Richards' equation, Adv. Water Res. 22 (1999) 831–840.

    Google Scholar 

  31. C.S. Woodward and C.N. Dawson, Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media, SIAM J. Numer. Anal. 37 (2000) 701–724.

    Google Scholar 

  32. E. Zeidler, Applied Functional Analysis, Vol. I, Applied Mathematical Sciences, Vol. 108 (Springer, New York, 1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pop, I.S. Error Estimates for a Time Discretization Method for the Richards' Equation. Computational Geosciences 6, 141–160 (2002). https://doi.org/10.1023/A:1019936917350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019936917350

Navigation