Skip to main content
Log in

AFLP-derived SCARs facilitate construction of a 1.1 Mb sequence-ready map of a region that spans the Vf locus in the apple genome

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The availability of high-density anchored markers is a prerequisite for reliable construction of a deep coverage BAC contig, which leads to creation of a sequence-ready map in the target chromosomal region. Unfortunately, such markers are not available for most plant species, including woody perennial plants. Here, we report on an efficient approach to build a megabase-size sequence-ready map in the apple genome for the Vf region containing apple scab resistance gene(s) by targeting AFLP-derived SCAR markers to this specific genomic region. A total of 11 AFLP-derived SCAR markers, previously tagged to the Vf locus, along with three other Vf-linked SCAR markers have been used to screen two apple genome BAC libraries. A single BAC contig which spans the Vf region at a physical distance of approximately 1,100 kb has been constructed by assembling the recovered BAC clones, followed by closure of inter-contig gaps. The contig is ∼ 4 ×deep, and provides a minimal tiling path of 16 contiguous and overlapping BAC clones, thus generating a sequence-ready map. Within the Vf region, duplication events have occurred frequently, and the Vf locus is restricted to the ca. 290 kb region covered by a minimum of three overlapping BAC clones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bénaouf, G. and Parisi, G. 2000. Genetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology 90: 236–242.

    Google Scholar 

  • Bournival, B.L. and Korban, S.S. 1987. Electrophoretic analysis of genetic variability in the apple. Scient. Hort. 31: 233–243.

    Google Scholar 

  • Cao, Y., Kang, H.L., Xu, X., Wang, M., Dho, S.H., Huh, J.R., Lee, B.J., Kalush, F., Bocskai, D., Ding, Y., Tesmer, J.G., Lee, J., Moon, E., Jurecic, V., Baldini, A., Weier, H.U., Doggett, N.A., Simon, M.I., Adams, M.D. and Kim, U.J. 1999. A 12-Mb complete coverage BAC contig map in human chromosome 16p13.1-p11.2. Genome Res. 9: 763–774.

    Google Scholar 

  • Chen, C.X. and Gmitter, F.G. 1999. Direct cloning and sequencing of bacterial artificial chromosome (BAC) insert ends based on double digestion. Plant Mol. Biol. Reptr. 17: 231–238.

    Google Scholar 

  • Crosby, J.A., Janick, J., Pecknold, P.C., Korban, S.S., O'Connor, P.A., Ries, S., Goffreda, J. and Voordeckers, A. 1992. Breeding apples for scab resistance: 1945-1990. Fruit Var. J. 46: 145-166.

  • Gardiner, S.E., Bassett, H.C.M., Noiton, D.A.M., Bus, V.G., Hofstee, M.E., White, A.G., Ball, R.D., Forster, R.L.S. and Rikkerink, E.H.A. 1996. A detailed linkage map around an apple scab resistance gene demonstrates that two disease resistance classes both carry the Vf gene. Theor. Appl. Genet. 93: 485–493.

    Google Scholar 

  • Gessler, C. 1989. Genetics of interaction Venturia inaequalis-Malus: The conflict between theory and reality. Pages 168-190 in: Integrated Control of Pome Fruit Diseases, Vol. II. C. Gesseler, D.J. Butt, and B. Koller, eds IOBC/WPRS, Zurich, Switzerland.

  • Gianfranceschi, L., Koller, B., Seglias, N., Kellerhals, M. and Gessler, C. 1996. Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor. Appl. Genet. 93: 199–204.

    Google Scholar 

  • Haanstra, J.P.W., Wye, C., Verbakel, H., Meijer-Dekens, F., van den Berg, P., Odinot, P., van Heusden, A.W., Tanksley, S., Lindhout, P. and Peleman, J. 1999. An integrated high density RFLP-AFLP map of tomato based on two Lycopersicon esculentum x L-pennellii F-2 populations. Theor. Appl. Genet. 99: 254–271.

    Google Scholar 

  • Hemmat, M., Weeden, N.F., Aldwinckle, H.S. and Brown, S.K. 1998. Molecular markers for the scab resistance (Vf) region in apple. J. Amer. Soc. Hort. Sci. 123: 992–996.

    Google Scholar 

  • Klein, P.E., Klein, R.R., Cartinhour, S.W., Ulanch, P.E., Dong, J., Obert, J.A., Morishige, D.T., Schleuter, S.D., Childs, K.L., Ale, M. and Mullet, J.E. 2000. A high-throughput AFLP-based method for constructing intergrated genetic and physical maps: Progress towards a sorghum genome map. Genome Res. 10: 789–807.

    Google Scholar 

  • Korban, S.S. and Chen, H. 1992. Apple. In: Litz R. and F.A. Hammerschalg (Eds) Biotechnology of perennial fruit crops. CAB Intl., Wallingford, UK, pp. 203–227.

    Google Scholar 

  • Lukowitz, W., Gillmor, C.S. and Scheible, W.R. 2000. Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol. 123: 795–805.

    Google Scholar 

  • Manganaris, A.G., Alston, F.H., Weeden, N.F., Aldwinckle, H.S., Gustafson, H.L. and Brown, S.K. 1994. Isozyme locus Pgm-1 is tightly linked to a gene (Vf ) for scab resistance in apple. J. Amer. Soc. Hort. Sci. 119: 1286–1288.

    Google Scholar 

  • Marra, M.A., Kucaba, T.A., Dietrich, N.L., Green, E.D., Brownstein, B., Wilson, R.K., McDonald, K.M., Hillier, L.W., McPherson, J.D. and Waterston, R.H. 1997. High throughput fingerprint analysis of large-insert clones. Genome Res 7: 1072–1084.

    Google Scholar 

  • McPherson, J.D. 1997. Sequence ready-or not. Genome Res. 7: 1111–1113.

    Google Scholar 

  • Meyers, B.C., Chin, D.B., Shen, K.A., Sivaramakrishnan, S., Lavelle, D.O., Zhang, Z. and Michelmore, R.W. 1998. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell, 10: 1817–1832.

    Google Scholar 

  • Nakamura, S., Asakawa, S., Ohmido, N., Fukui, K., Shimizu, N. and Kawasaki, S. 1997. Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta (2) using a highly representative rice BAC library. Mol. Gen. Genet. 254: 611–620.

    Google Scholar 

  • Niederfuhr, A., Hummerich, H., Gawin, B., Boyle, S., Little, P.F.R. and Gessler, M. 1998. A sequence-ready 3-Mb PAC contig covering 16 breakpoints of the Wilms tumor aniridia region of human chromosome 11p13. Genomics 53: 155–163.

    Google Scholar 

  • Patocchi, A., Vinatzer, B.A., Gianfraneschi, L., Tartarini, S., Zhang, H.B., Sansavini, S. and Gessler, C. 1999. Construction of a 550 kb BAC contig spanning the genomic region containing the apple scab resistance gene Vf. Mol. Gen. Genet. 262: 884–891.

    Google Scholar 

  • Parisi, L. and Lespinasse, Y. 1996. Pathogenicity of Venturia inaequalis strains of race 6 on apple clones (Malus sp.). Plant Dis. 80: 1179–1183.

    Google Scholar 

  • Parisi, L., Lespinasse, Y., Guillaumes, J. and Krueger, J. 1993. A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology 83: 533–537.

    Google Scholar 

  • Richter, T.E. and Ronald, P.C. 2000. The evolution of disease resistance genes. Plant Mol. Biol. 42: 195–204.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. 'Molecular Cloning: A Laboratory Mannual' 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Schmidt, R., West, J., Love, K., Lenehan, Z., Lister, C., Thompson, H.Y., Bouchez, D. and Dean, C. 1995. Physical map and organization of Arabidopsis thaliana chromosome 4. Science 270: 480–483.

    Google Scholar 

  • Soderlund, C., Humphray, S., Dunham, A. and French, L. 2000. Contigs built with fingerprints, markers, and FPC V4.7. Genome Res. 10: 1772–1787.

    Google Scholar 

  • Stein, N., Feuillet, C., Wicker, T., Schlagenhauf, E. and Keller, B. 2000. Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc. Natl. Acad. Sci. USA. 97: 13436–13441.

    Google Scholar 

  • Tanksley, S.D., Ganal, M.W. and Martin, G.B. 1995. Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet. 11: 63–68.

    Google Scholar 

  • Tartarini, S. 1996. RAPD markers linked to the Vf gene for scab resistance in apple. Theor. Appl. Genet. 92: 803–810.

    Google Scholar 

  • Tartarini, S., Gianfranceschi, L., Sansavini, S. and Gessler, C. 1999. Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breed. 118: 183–186.

    Google Scholar 

  • Temnykh, S., Park, W.D., Ayres, N., Cartinhour, S., Hauck, N., Lipovich, L., Cho, Y.G., Ishii, T. and McCouch, S.R. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100: 697–712.

    Google Scholar 

  • Vollrath, D. and Jaramillo-Babb, 1999. A sequence-ready BAC clone contig of a 2.2-Mb segment of human chromosome lq24. Genome Res. 9: 150–157.

    Google Scholar 

  • Wise, R.P. 2000. Disease resistance: what's brewing in barley genomics. Plant Dis. 84: 1160–1170.

    Google Scholar 

  • Xu, M.L. and Korban, S.S. 2000. Saturation mapping of the apple scab resistance gene Vf using AFLP markers. Theor. Appl. Genet. 101: 844–851.

    Google Scholar 

  • Xu, M.L., Huaracha, E. and Korban, S.S. 2001a. Development of sequence characterized amplified regions (SCARs) from AFLP markers tightly linked to the Vf gene in apple. Genome 44: 63–70.

    Google Scholar 

  • Xu, M.L., Song, J.Q., Cheng, Z.K., Jiang, J.M. and Korban, S.S. 2001b. A bacterial artificial chromosome (BAC) library of Malus floribunda 821 and contig construction for positional cloning of the apple scab resistance gene Vf. Genome 44: 1104–1113.

    Google Scholar 

  • Xu, M.L., Song, J.Q., Jiang, J.M. and Korban, S.S. 2001c. Constructing a bacterial artificial chromosome library of the apple cultivar GoldRush. Acta Hort. (in press).

  • Yang, H. and Korban, S.S. 1996. Screening apples for OPD20/600 using sequence-specific primers. Theor. Appl. Genet. 92: 263–266.

    Google Scholar 

  • Yang, H., Korban, S.S., Kruger, J. and Schmidt, H. 1997a. A randomly amplified polymorphic DNA (RAPD) marker tightly linked to the scab-resistance gene Vf in apple. J. Amer. Soc. Hort. Sci. 122: 47–52.

    Google Scholar 

  • Yang, H., Korban, S.S., Kruger, J. and Schmidt, H. 1997b. The use of a modified bulk segregant analysis to identify a molecular marker linked to a scab resistance gene in apple. Euphytica 94: 175–182.

    Google Scholar 

  • Young, W.P., Schupp, J.M. and Keim, P. 1999. DNA methylation and AFLP marker distribution in the soybean genome. Theor. Appl. Genet. 99: 785–792.

    Google Scholar 

  • Zhang, H.B. and Wing, R.D. 1997. Physical mapping of the rice genome with BACs. Plant Mol. Biol. 35: 115–127.

    Google Scholar 

  • Zhu, H., Blackmon, B.P., Sasinowski, M. and Dean, R.A. 1999. Physical map and organization of chromosome 7 in the rice blast fungus, Magnaporthe grisea. Genome Res. 9: 739–750.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Korban, S.S. AFLP-derived SCARs facilitate construction of a 1.1 Mb sequence-ready map of a region that spans the Vf locus in the apple genome. Plant Mol Biol 50, 803–818 (2002). https://doi.org/10.1023/A:1019912419709

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019912419709

Navigation