Skip to main content
Log in

Expansins in the bryophyte Physcomitrella patens

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Expansins are cell wall proteins which play a key function in basic processes of plant growth and differentiation. It has been proposed that expansins are likely to be present in all land plants and, to date, they have been reported in angiosperms, gymnosperms and pteridophytes. In this paper, we provide the first report and analysis of genes encoding expansin-like proteins in the bryophyte, Physcomitrella patens. Our analysis indicates that both α- and β-expansins are present as gene families in this plant and expression analysis indicates that these genes are subject to a complex regulation by both hormonal and environmental factors. In particular, the expression of many expansin genes in P. patens is upregulated by stress conditions, suggesting that they play a role in the specific cellular differentiation displayed by P. patens in response to such stress. Finally, we provide the first report on the generation and analysis of a series of knockout mutants for individual expansin genes. Abbreviations: IAA, indole-acetic acid; BAP, 6-benzylaminopurine; ABA, abscisic acid; npt, neomycin phospotransferase; KO, knockout

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic Local Alignment Search Tool. J. Mol. Biol. 215: 403–410.

    Google Scholar 

  • Ashton, N. W. and Cove, D. J. 1977. The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants in the moss Physcomitrella patens. Mol. Gen. Genet. 154: 87–95.

    Google Scholar 

  • Ashton, N. W., Grimsley, N. H. and Cove, D. 1979. Analysis of gametophytic developoment in the moss Physcomitrella patens using auxin and cytokinin resistant mutants. Planta 144: 427–435.

    Google Scholar 

  • Bonnema, A. B., Peytavi, R., van Daelen, R. A. J., Zabel, P. and Grimsley, N. 1993. Development of an in vivo complemention system for identification of plant genes using yeast artificial chromosomes (YACS). In: Bacterial Wilt. (ACIAR proceedings) Eds. Hartmann, G. L and Hayward, A. C.

  • Bouché, N. and Bouchez, D. 2001. Arabidopsis gene knockout: phenotypes wanted. Curr. Opin. Plant Biol. 4: 111–117.

    Google Scholar 

  • Caderas, D., Muster, M., Vogler, H., Mandel, T., Rose, J.K.C., McQueen-Mason, S. and Kuhlemeier, C. 2000. Limited correlation between expansin gene expression and elongation growth rate. Plant Physiol. 123: 1399–1413.

    Google Scholar 

  • Cho, H-T. and Cosgrove, D. J. 2000. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 9783–9788.

    Google Scholar 

  • Cho, H-T. and Kende, H. 1997. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell 9: 1661–1671.

    Google Scholar 

  • Cosgrove, D. J. 2000. Loosening of plant cell walls by expansins. Nature 407: 321–326.

    Google Scholar 

  • Cove, D. J., Knight, C. D. and Lamparter, T. 1997. Mosses as model systems. Trends Plant Sci. 2: 99–105.

    Google Scholar 

  • Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Fleming, A. J., McQueen-Mason, S., Mandel, T. and Kuhlemeier, C. 1997. Induction of leaf primordia by the cell wall protein expansin. Science 276: 1415–1418.

    Google Scholar 

  • Goode, J. A., Stead, A. D. and Duckett, J. G. 1993. Redifferentiation of moss protonemata: an experimental and immunofluorescence study of brood cell formation. Can. J. Bot. 71: 1510–1519.

    Google Scholar 

  • Herrin, D. L. and Schmidt, G.W. 1988. Rapid, reversible staining of northern blots prior to hybridization. Biotechniques 6: 196–200.

    Google Scholar 

  • Hutchison, K. W., Singer, P. B., Diaz-Sala, C. and Greenwood, M. S. 1999. Expansins are conserved in conifers and expressed in response to exogenous auxin. Plant Physiol. 120, 827–832.

    Google Scholar 

  • Kim, J. H., Cho, H.-T. and Kende, H. 2000. ?-expansins in the semi-aquatic ferns Marsilea quadrifolia and Regnellidium diphyllum: evolutionary aspects and physiological role in rachis elongation. Planta 212: 85–92.

    Google Scholar 

  • Knight, C. D., Sehgal, A., Atwal, K., Wallace, J. C., Cove, D. J., Coates, D., Quatrano, R. S., Bahadur, S., Stockley, P. G. and Cuming, A. C. (1995) Molecular response to abscisic acid and stress conserved between mosses and cereal. Plant Cell 7: 499–506.

    Google Scholar 

  • Lee, Y., Choi, D. and Kende, H. 2001. Expansins: ever-expanding numbers and functions. Curr. Opin. Plant Biol. 4: 527–532.

    Google Scholar 

  • Li, Y., Darley, C. P., Ongaro, V., Fleming, A., Schipper, O., Baldauf, S. L. and McQueen-Mason, S. J. 2002. Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol. 128, 854–864.

    Google Scholar 

  • McQueen-Mason, S., Durachko, D. M. and Cosgrove, D. J. 1992. Two endogenous proteins that induce cell wall expansion in plants. Plant Cell 4: 1425–1433.

    Google Scholar 

  • Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne, G. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot. Engineer. 10: 1–6.

    Google Scholar 

  • Oliver, M. J. 1991. Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis. Plant Physiol. 97: 1501–1511.

    Google Scholar 

  • Perrière, G. and Gouy, M. 1996. WWW-Query: An on-line retrieval system for biological sequence banks. Biochimie 78: 364–369.

    Google Scholar 

  • Pien, S., Wyrzykowska, J., McQueen-Mason, S., Smart, C. and Fleming, A.J. 2001. Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc. Natl. Acad. Sci. USA 98: 11812–11817.

    Google Scholar 

  • Reidy, B., McQueen-Mason, S., Nosberger, J. and Fleming, A. J. 2001. Differential expression of alpha and beta expansin genes in the elongating leaf of Festuca pratensis. Plant Mol. Biol. 46: 491–504.

    Google Scholar 

  • Rose, J. K., Lee, H. H. and Bennett, A. B. 1997. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc. Natl. Acad. Sci. USA 94: 5955–5960.

    Google Scholar 

  • Sambrook, J., Fritsch, E. F. & Maniatis, T. 1992. Molecular Cloning: a laboratory manual. (Cold Spring Harbor, New York).

    Google Scholar 

  • Schaefer, D. 2001. Gene targeting in Physcomitrella patens. Curr. Opin. Plant Biol. 4: 143–150.

    Google Scholar 

  • Schaefer, D. and Zrÿd, J.-P. 1997. Efficient gene targeting in the moss Physcomitrella patens. Plant J. 11: 1195–1206.

    Google Scholar 

  • Shcherban, T. Y., Shi, J., Durachko, D. M., Guiltinan, M. J., McQueen-Mason, S. J., Shieh, M., and Cosgrove, D. J. 1995. Molecular cloning and sequence analysis of expansins-a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc. Natl. Acad. Sci. USA 92: 9245–9249.

    Google Scholar 

  • Strepp, R., Scholz, S., Kruse, S., Speth, V. and Reski, R. 1998. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc. Natl. Acd. Sci. USA 95: 4368–4373.

    Google Scholar 

  • Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.

    Google Scholar 

  • Yu, W., Meeley, R. B. and Cosgrove, D. J. 2001. Analysis and expression of the ?-expansin and ?-expansin gene families in maize. Plant Physiol. 126: 222–232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schipper, O., Schaefer, D., Reski, R. et al. Expansins in the bryophyte Physcomitrella patens . Plant Mol Biol 50, 789–802 (2002). https://doi.org/10.1023/A:1019907207433

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019907207433

Navigation