Skip to main content
Log in

Post-translational modification of barley 14-3-3A is isoform-specific and involves removal of the hypervariable C-terminus

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The 14-3-3 protein family is a family of regulatory proteins involved in diverse cellular processes. In a previous study of regulation of individual 14-3-3 isoforms in the germinating barley embryo, we found that a post-translationally modified, 28 kDa form of 14-3-3A was present in specific cell fractions of the germinated embryo. In the present study, we identify the nature of the modification of 14-3-3A, and show that the 28 kDa doublet is the result of cleavage of the C-terminus. The 28 kDa forms of 14-3-3A lack ten or twelve amino acid residues at the non-conserved C-terminus of the protein, respectively. Barley 14-3-3B and 14-3-3C are not modified in a similar way. Like the 30 kDa form, in vitro produced 28 kDa 14-3-3A is still capable of binding AHA2 H+-ATPase in an overlay assay. Our results show a novel isoform-specific post-translational modification of 14-3-3 proteins that is regulated in a tissue-specific and developmental way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmann, M., Huber, J.L., Liao, P.C., Gage, D.A. and Huber, S.C. 1996. The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14-3-3 protein. FEBS Lett. 387: 127–131.

    Google Scholar 

  • Bihn, E.A., Paul, A.L., Wang, S.W., Erdos, G.W. and Ferl, R.J. 1997. Localization of 14-3-3 proteins in the nuclei of Arabidopsis and maize. Plant J. 12: 1439–1445.

    Google Scholar 

  • Chan, T.A., Hermeking, H., Lengauer, C., Kinzler, K.W. and Vogelstein, B. 1999. 14-3-3 ? is required to prevent mitotic catastrophe after DNA damage. Nature 401: 616–620.

    Google Scholar 

  • Chung, H.J., Sehnke, P.C. and Ferl, R.J. 1999. The 14-3-3 proteins: cellular regulators of plant metabolism. Trends. Plant Sci. 4: 367–371.

    Google Scholar 

  • Dubois, T., Rommel, C., Howell, S., Steinhussen, U., Soneji, Y., Morrice, N., Moelling, R. and Aitken, A. 1997. 14-3-3 is phosphorylated by casein kinase I on residue 233: phosphorylation at this site in vivo regulates Raf/14-3-3 interaction. J. Biol. Chem. 272: 28882–28888.

    Google Scholar 

  • Finnie, C., Borch, J. and Collinge, D.B. 1999. 14-3-3 proteins: eukaryotic regulatory proteins with many functions. Plant Mol. Biol. 40: 545–554.

    Google Scholar 

  • Fu, H.A., Subramanian, R.R. and Masters, S.C. 2000. 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40: 617–647.

    Google Scholar 

  • Fuglsang, A.T., Visconti, S., Drumm, K., Jahn, T., Stensballe, A., Mattei, B., Jensen, O.N., Aducci, P. and Palmgren, M.G. 1999. Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residues Tyr(946)-Thr-Val and requires phosphorylation of Thr(947). J. Biol. Chem. 274: 36774–36780.

    Google Scholar 

  • Gu, M.Y. and Du, X.P. 1998. A novel ligand-binding site in the ?-form 14-3-3 protein recognizing the platelet glycoprotein Ib alpha and distinct from the c-Raf-binding site. J. Biol. Chem. 273: 33465–33471.

    Google Scholar 

  • Ichimura, T., Ito, M., Itagaki, C., Takahashi, M., Horigome, T., Omata, S., Ohno, S. and Isobe, T. 1997. The 14-3-3 protein binds its target proteins with a common site located towards the C-terminus. FEBS Lett. 413: 273–276.

    Google Scholar 

  • Jahn, T., Fuglsang, A.T., Olsson, A., Bruntrup, I.M., Collinge, D.B., Volkmann, D., Sommarin, M., Palmgren, M.G. and Larsson, C. 1997. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H+-ATPase. Plant Cell 9: 1805–1814.

    Google Scholar 

  • Jones, D.H., Ley, S. and Aitken, A. 1995. Isoforms of 14-3-3 protein can form homo-and heterodimers in vivo and in vitro: implications for function as adapter proteins. FEBS Lett. 368: 55–58.

    Google Scholar 

  • Korthout, H.A.A.J. and de Boer, A.H. 1998. Plant plasma membrane 14-3-3 proteins differ in solubility and form fusicoccin-dependent complexes. Plant Physiol. Biochem. 36: 357–365.

    Google Scholar 

  • Kurz, E.U., Leader, K.B., Kroll, D.J., Clark, M. and Gieseler, F. 2000. Modulation of human DNA topoisomerase II ? function by interaction with 14-3-3 ?. J. Biol. Chem. 275: 13948–13954.

    Google Scholar 

  • Liu, D., Bienkowska, J., Petosa, C., Collier, R.J., Fu, H. and Liddington, R. 1995. Crystal structure of the ? isoform of the 14-3-3 protein. Nature 376: 191–194.

    Google Scholar 

  • Lopez-Girona, A., Furnari, B., Mondesert, O. and Russell, P. 1999. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397: 172–175.

    Google Scholar 

  • Lu, G., de Vetten, N.C., Sehnke, P.C., Isobe, T., Ichimura, T., Fu, H., van Heusden, G.P. and Ferl, R.J. 1994. A single Arabidopsis GF14 isoform possesses biochemical characteristics of diverse 14-3-3 homologues. Plant Mol. Biol. 25: 659–667.

    Google Scholar 

  • Lu, G., Sehnke, P.C. and Ferl, R.J. 1994. Phosphorylation and calcium binding properties of an Arabidopsis GF14 brain protein homolog. Plant Cell 6: 501–510.

    Google Scholar 

  • Moorhead, G., Douglas, P., Morrice, N., Scarabel, M., Aitken, A. and MacKintosh, C. 1996. Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin. Curr. Biol. 6: 1104–1113.

    Google Scholar 

  • Muslin, A.J. and Xing, H. 2000. 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell. Signal. 12: 703–709.

    Google Scholar 

  • Muslin, A.J., Tanner, J.W., Allen, P.M. and Shaw, A.S. 1996. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84: 889–897.

    Google Scholar 

  • Oecking, C., Piotrowski, M., Hagemeier, J. and Hagemann, K. 1997. Topology and target interaction of the fusicoccin-binding 14-3-3 homologs of Commelina communis. Plant J. 12: 441–453.

    Google Scholar 

  • Pan, S.Q., Sehnke, P.C., Ferl, R.J. and Gurley, W.B. 1999. Specific interactions with TBP and TFIIB in vitro suggest that 14-3-3 proteins may participate in the regulation of transcription when part of a DNA binding complex. Plant Cell 11: 1591–1602.

    Google Scholar 

  • Petosa, C., Masters, S.C., Bankston, L.A., Pohl, J., Wang, B.C., Fu, H.I. and Liddington, R.C. 1998. 14-3-3 ? binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J. Biol. Chem. 273: 16305–16310.

    Google Scholar 

  • Rittinger, K., Budman, J., Xu, J., Volinia, S., Cantley, L.C., Gamblin, S.J. and Yaffe, M.R. 1999. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol. Cell 4: 153–166.

    Google Scholar 

  • Roberts, M.R. 2000. Regulatory 14-3-3 protein-protein interactions in plant cells. Curr. Opin. Plant Biol. 3: 400–405.

    Google Scholar 

  • Roberts, M.R. and Bowles, D.J. 1999. Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants. Plant Physiol. 119: 1243–1250.

    Google Scholar 

  • Schultz, T.F., Medina, J., Hill, A. and Quatrano, R.S. 1998. 14-3-3 proteins are part of an abscisic acid VIVIPAROUS1 (VP1) response complex in the Em promoter and interact with VP1 and EmBP1. Plant Cell 10: 837–847.

    Google Scholar 

  • Testerink, C., van der Meulen, R.M., Oppedijk, B.J., de Boer, A.H., Heimovaara-Dijkstra, S., Kijne, J.W. and Wang, M. 1999. Differences in spatial expression between 14-3-3 isoforms in germinating barley embryos. Plant Physiol. 121: 81–87.

    Google Scholar 

  • Testerink, C., van der Meulen, R.M. and Wang, M. 2000 Aspects of ABA and fusicoccin signal transduction in barley grains. I. Effect of fusicoccin on ABA-induced gene expression in embryo and aleurone. II. Spatial and temporal expression of 14-3-3 proteins in dormant embryos. In: J.D. Viemont and J. Crabbe (Eds.) Dormancy in plants, CAB International, pp. 173-182.

  • van Zeijl, M.J., Testerink, C., Kijne, J.W. and Wang, M. 2000. Subcellular differences in post-translational modification of barley 14-3-3 proteins. FEBS Lett. 473: 292–296.

    Google Scholar 

  • Vincenz, C. and Dixit, V.M. 1996. 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules. J. Biol. Chem. 271: 20029–20034.

    Google Scholar 

  • Wang, W. and Shakes, D.C. 1996. Molecular evolution of the 14-3-3 protein family. J. Mol. Evol. 43: 384–398.

    Google Scholar 

  • Wang, W.F. and Shakes, D.C. 1997. Expression patterns and transcript processing of ftt-1 and ftt-2, two C. elegans 14-3-3 homologues. J. Mol. Biol. 268: 619–630.

    Google Scholar 

  • Watanabe, M., Isobe, T., Ichimura, T., Kuwano, R., Takahashi, Y., Kondo, H. and Inoue, Y. 1994. Molecular cloning of rat cDNAs for the ? and ? subtypes of 14-3-3 protein and differential distributions of their mRNAs in the brain. Brain Res. Mol. Brain Res. 25: 113–121.

    Google Scholar 

  • Yaffe, M.B., Rittinger, K., Volinia, S., Caron, P.R., Aitken, A., Leffers, H., Gamblin, S.J., Smerdon, S.J. and Cantley, L.C. 1997. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91: 961–971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Testerink, C., van Zeijl, M.J., Drumm, K. et al. Post-translational modification of barley 14-3-3A is isoform-specific and involves removal of the hypervariable C-terminus. Plant Mol Biol 50, 535–542 (2002). https://doi.org/10.1023/A:1019869900285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019869900285

Navigation