Skip to main content
Log in

Mutual Effects of Substrates and Inhibitors in Reactions Catalyzed by Isolated Iron–Molybdenum Cofactor of Nitrogenase

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The inhibiting effects of CO and N2 on the ability of the nitrogenase iron–molybdenum cofactor (FeMoco) to catalyze acetylene reduction outside the protein were studied to obtain data on the mechanism of substrate reduction at the active center of the enzyme nitrogenase. It was found that CO and N2 reacted with FeMoco that was separated from the enzyme and reduced by zinc amalgam (E = –0.84 V relative to a normal hydrogen electrode (NHE)) (I) or europium amalgam (E = –1.4 V relative to NHE) (II). In system I, CO reversibly inhibited the reaction of acetylene reduction to ethylene with K i = 0.05 atm CO. In system II, CO inhibited the formation of the two products of C2H2 reduction in different manners: the mixed-type or competitive inhibition was found for ethylene formation with K i = 0.003 atm CO and the incomplete competitive inhibition was found for ethane formation with K i = 0.006 atm CO. The fraction of C2H6 in the reaction products was greater than 50% at a CO pressure of 0.05 atm because of the stronger inhibiting effect of CO on the formation of C2H4. The change in the product specificity of acetylene-reduction centers under influence of CO was explained by some stabilization of the intermediate complex [FeMoco · C2H2] upon the simultaneous coordination of CO to the catalytic cluster. Because of this, the fraction value of ethane as a multielectron reduction product increased. The experimental results suggest that several active sites at the FeMoco cluster reduced outside the protein can be simultaneously occupied by substrates and (or) inhibitors. The inhibition of both ethane and ethylene formation by molecular nitrogen in system II is competitive with K i = 0.5 atm N2 for either product. That is, N2 and C2H2 as ligands compete for the same coordination site at the reduced FeMoco cluster. The inhibiting effects of CO and N2 on the catalytic behaviors of both isolated FeMoco and that in the enzyme were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hardy, R., A Treatise on Dinitrogen Fixation, Hardy, R., Bottomley, F. and Burns, R., New York: Wiley, 1979.

    Google Scholar 

  2. Ryle, M.J., Lee, H.-I., Seefeldt, L.C., and Hoffman, B.M., Biochemistry, 2000, vol. 39, p. 1114.

    PubMed  Google Scholar 

  3. Seefeldt, L.C., Rasche, M.E., and Ensign, S.A., Biochemistry, 1995, vol. 34, p. 5382.

    PubMed  Google Scholar 

  4. Shah, V.K. and Brill, W.J., Proc. Natl. Acad. Sci. U.S.A, 1977, vol. 74, p. 3249; (b) Hawkes, T.R., McLean, P.A., and Smith, B.E., Biochem. J. 1984, vol. 217, p. 317.

    PubMed  Google Scholar 

  5. Burgess, B.K., Chem. Rev., 1990, vol. 90, p. 1377.

    Google Scholar 

  6. Smith, B.E., Durrant, M.C., Fairhurst, S.A., et al., Coord. Chem. Rev., 1999, vols. 185–186, p. 669.

    Google Scholar 

  7. Howard, J.B. and Rees, D.C., Chem. Rev., 1996, vol. 96, p. 2965.

    Article  PubMed  Google Scholar 

  8. Kim, J. and Rees, D.C., Science, 1992, vol. 257, p. 1677.

    PubMed  Google Scholar 

  9. Kim, J. and Rees, D.C., Nature, 1992, vol. 360, p. 553.

    Google Scholar 

  10. Bolin, J.T., Ronco, A.E., Mortenson, L.E., et al., in Nitrogen Fixation: Achievements and Objectives, Gresshoff, P.M., Roth, L.E., Stacey, G., and Newton, W.E., Eds., New York: Chapman and Hall, 1990, p. 117.

    Google Scholar 

  11. Bazhenova, T.A., Bazhenova, M.A., Petrova, G.N., and Shilov, A.E., Kinet. Katal., 1997, vol. 38, no. 2, p. 319.

    Google Scholar 

  12. Bazhenova, T.A., Bazhenova, M.A., Petrova, G.N., et al., Kinet. Katal., 2000, vol. 41, no. 4, p. 550.

    Google Scholar 

  13. Hawkes, T.R. and Smith, B.E., Biochem. J., 1983, vol. 209, no. 1, p. 43.

    PubMed  Google Scholar 

  14. McLenn, P.A., Wink, D.A., Chapman, S.K., et al., Biochemistry, 1989, vol. 28, p. 9402.

    PubMed  Google Scholar 

  15. Handbuch der Práparativen Anorganishen Chemie, Brauer, G.M., Ed., Stuttgart: Ferdinand Enke Verlag, 1954.

  16. Syrtsova, L.A., Popko, E.V., Likhtenshtein, G.I., and Druzhinin, S.Yu., Biokhimiya, 1983, vol. 48, no. 7, p. 1195.

    Google Scholar 

  17. Wink, D.A., McLenn, P.A., Hickman, A.B., and Orme-Johnson, W.H., Biochemistry, 1989, vol. 28, p. 9407.

    PubMed  Google Scholar 

  18. Dilworth, M.J., Eady, R.R., and Eldridge, M., Biochem. J., 1988, vol. 249, p. 745.

    PubMed  Google Scholar 

  19. Didenko, L.P., Gavrilina, O.K., Yablonskaya, E.E., et al., Nouv. J. Chim., 1983, vol. 7, p. 605.

    Google Scholar 

  20. Bulen, W.A. and Le Comte, J.R., Proc. Natl. Acad. Sci. U.S.A, 1966, vol. 56, p. 979.

    PubMed  Google Scholar 

  21. Volynets, V.F. and Volynets, A.P., Analiticheskaya khimiya azota (The Analytical Chemistry of Nitrogen), Moscow: Nauka, 1977, p. 90.

    Google Scholar 

  22. Fawcett, J.K. and Scott, J.E., J. Clin. Pathol., 1960, vol. 13, p. 156.

    PubMed  Google Scholar 

  23. Christie, P.D., Lee, H.-I., Cameron, L.M., et al., J. Am. Chem. Soc., 1996, vol. 118, p. 8707.

    Google Scholar 

  24. Webb, L., Enzyme and Metabolic Inhibitors, New York, 1966.

  25. Shen, J., Dean, D.R., and Newton, W.E., Biochemistry, 1997, vol. 36, p. 4884.

    PubMed  Google Scholar 

  26. Grönberg, K.L.C., Gormal, C.A., Smith, B.E., and Henderson, R.A., Chem. Commun, 1997, no. 7, p. 713.

  27. George, S.J., Ashby, G.A., Wharton, C.W., and Thorneley, R.N.F., J. Am. Chem. Soc., 1997, vol. 119, p. 6450.

    Google Scholar 

  28. Thorneley, R.N.F., Ashby, G.A., and George, S.J., Nitrogen Fixation: From Molecules to Crop Productivity, Pedrosa, F.O. et al., Eds., Kluwer Academic, 2000, p. 39.

  29. Davis, L.C., Henzl, M.T., Burris, R.H., and Orme-Johnson, W.H., Biochemistry, 1979, vol. 18, p. 4860.

    PubMed  Google Scholar 

  30. Bazhenova, T.A., Bazhenova, M.A., Petrova, G.N., and Shilov, A.E., Kinet. Katal., 1999, vol. 40, no. 6, p. 942.

    Google Scholar 

  31. Thorneley, R.N.F., Eady, R.R., and Lowe, D.J., Nature, 1978, vol. 272, p. 557.

    Google Scholar 

  32. Ibrahim, S.K., Vincent, K., Gormal, C.A., et al., Chem. Commun., 1999, p. 1019.

  33. Lee, H.-I., Hales, B.J., and Hoffman, B.M., Biological Nitrogen Fixation for the 21st Century, Elmerich, C., Ed., Kluwer Academic, 1998, p. 55.

  34. Cameron, L.M. and Hales, B.J., Nitrogen Fixation: Fundamentals and Applications, Tikhonovich, I.A., Ed., Kluwer Academic, 1995, p. 109.

  35. Burns, R., A Treatise on Dinitrogen Fixation, Hardy, R., Bottomley, F., and Burns, R., Eds., New York: Wiley, 1979.

    Google Scholar 

  36. Fisher, K., Dilworth, M.J., and Newton, W.E., Biochemistry, 2000, vol. 39, p. 15570.

    PubMed  Google Scholar 

  37. Kim, C.-H., Newton, W.E., and Dean, D.R., Biochemistry, 1995, vol. 34, p. 2798.

    PubMed  Google Scholar 

  38. Christiansen, J., Seefeldt, L.C., and Dean, D.R., J. Biol. Chem., 2000, vol. 275, no. 46, p. 36104.

    PubMed  Google Scholar 

  39. Bazhenova, T.A., Bazhenova, M.A., Petrova, G.N., and Shilov, A.E., Nitrogen Fixation: from Molecules to Crop Productivity, Pedrosa, F.O., Ed., Kluwer Academic, p. 49.

  40. Moore, V.G., Tittsworth, R.C., and Hales, B.J., J. Am. Chem. Soc., 1994, vol. 116, p. 12101.

    Google Scholar 

  41. Müller, A., Schneider, K., Gollan, U., et al., Iron-Sulfur Proteins, New York: Wiley, 1982, p. 551.

    Google Scholar 

  42. Pollock, R.C., Lee, H.-I., Cameron, L.M., et al., J. Am. Chem. Soc., 1995, vol. 117, p. 8686.

    Google Scholar 

  43. Rivera-Ortiz, J.M. and Burris, R.H., J. Bacteriol., 1975, vol. 123, no. 2, p. 537.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazhenova, M.A., Bazhenova, T.A., Petrova, G.N. et al. Mutual Effects of Substrates and Inhibitors in Reactions Catalyzed by Isolated Iron–Molybdenum Cofactor of Nitrogenase. Kinetics and Catalysis 43, 592–602 (2002). https://doi.org/10.1023/A:1019851707548

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019851707548

Keywords

Navigation